Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectromet...
Guardado en:
Autores principales: | Sven H. Giese, Ludwig R. Sinn, Fritz Wegner, Juri Rappsilber |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ab330b45697406d85ede559b5464d05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reliable identification of protein-protein interactions by crosslinking mass spectrometry
por: Swantje Lenz, et al.
Publicado: (2021) -
Evaluation of mass spectrometry MS/MS spectra for the presence of isopeptide crosslinked peptides.
por: Lawrence M Schopfer, et al.
Publicado: (2021) -
Atomic-resolution mapping of transcription factor-DNA interactions by femtosecond laser crosslinking and mass spectrometry
por: Alexander Reim, et al.
Publicado: (2020) -
A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes
por: Rebecca Beveridge, et al.
Publicado: (2020) -
DATABASE OF LEPTOSPIRA PROTEIN SPECTRA FOR MASS-SPECTROMETRY IDENTIFICATION
por: N. V. Breneva, et al.
Publicado: (2018)