EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease

Abstract Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sonja Simpraga, Ricardo Alvarez-Jimenez, Huibert D. Mansvelder, Joop M. A. van Gerven, Geert Jan Groeneveld, Simon-Shlomo Poil, Klaus Linkenkaer-Hansen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9ab39da007ab4afbb95dbc8502f9fe86
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ab39da007ab4afbb95dbc8502f9fe86
record_format dspace
spelling oai:doaj.org-article:9ab39da007ab4afbb95dbc8502f9fe862021-12-02T12:32:08ZEEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease10.1038/s41598-017-06165-42045-2322https://doaj.org/article/9ab39da007ab4afbb95dbc8502f9fe862017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06165-4https://doaj.org/toc/2045-2322Abstract Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capture the brain’s multi-faceted signature of disease or pharmacological intervention and use machine learning to improve classification performance. Using data from healthy subjects receiving scopolamine we developed an index of the muscarinic acetylcholine receptor antagonist (mAChR) consisting of 14 EEG biomarkers. This mAChR index yielded higher classification performance than any single EEG biomarker with cross-validated accuracy, sensitivity, specificity and precision ranging from 88–92%. The mAChR index also discriminated healthy elderly from patients with Alzheimer’s disease (AD); however, an index optimized for AD pathophysiology provided a better classification. We conclude that integrating multiple EEG biomarkers can enhance the accuracy of identifying disease or drug interventions, which is essential for clinical trials.Sonja SimpragaRicardo Alvarez-JimenezHuibert D. MansvelderJoop M. A. van GervenGeert Jan GroeneveldSimon-Shlomo PoilKlaus Linkenkaer-HansenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sonja Simpraga
Ricardo Alvarez-Jimenez
Huibert D. Mansvelder
Joop M. A. van Gerven
Geert Jan Groeneveld
Simon-Shlomo Poil
Klaus Linkenkaer-Hansen
EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
description Abstract Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capture the brain’s multi-faceted signature of disease or pharmacological intervention and use machine learning to improve classification performance. Using data from healthy subjects receiving scopolamine we developed an index of the muscarinic acetylcholine receptor antagonist (mAChR) consisting of 14 EEG biomarkers. This mAChR index yielded higher classification performance than any single EEG biomarker with cross-validated accuracy, sensitivity, specificity and precision ranging from 88–92%. The mAChR index also discriminated healthy elderly from patients with Alzheimer’s disease (AD); however, an index optimized for AD pathophysiology provided a better classification. We conclude that integrating multiple EEG biomarkers can enhance the accuracy of identifying disease or drug interventions, which is essential for clinical trials.
format article
author Sonja Simpraga
Ricardo Alvarez-Jimenez
Huibert D. Mansvelder
Joop M. A. van Gerven
Geert Jan Groeneveld
Simon-Shlomo Poil
Klaus Linkenkaer-Hansen
author_facet Sonja Simpraga
Ricardo Alvarez-Jimenez
Huibert D. Mansvelder
Joop M. A. van Gerven
Geert Jan Groeneveld
Simon-Shlomo Poil
Klaus Linkenkaer-Hansen
author_sort Sonja Simpraga
title EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
title_short EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
title_full EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
title_fullStr EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
title_full_unstemmed EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease
title_sort eeg machine learning for accurate detection of cholinergic intervention and alzheimer’s disease
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/9ab39da007ab4afbb95dbc8502f9fe86
work_keys_str_mv AT sonjasimpraga eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
AT ricardoalvarezjimenez eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
AT huibertdmansvelder eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
AT joopmavangerven eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
AT geertjangroeneveld eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
AT simonshlomopoil eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
AT klauslinkenkaerhansen eegmachinelearningforaccuratedetectionofcholinergicinterventionandalzheimersdisease
_version_ 1718394174207688704