Circular RNA Mitochondrial Translation Optimization 1 homologue (CircMTO1) induced by Zinc Finger Protein 460 (ZNF460) promotes oral squamous cell carcinoma progression through the microRNA miR-320a / Alpha Thalassemia/Mental Retardation, X-linked (ATRX) axis

Oral squamous cell carcinoma (OSCC) is one of the most common cancer types of head and neck cancer, accounting for 95% of all cases. However, the mechanisms underlying the pathogenesis of OSCC remain unclear. Circular RNA (CircRNA) has been extensively studied in the past decades and is a promising...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chen Zou, Xia Li, Xiaozhi Lv, Siyuan Wu, Jing Song, Zhe Tang, Hailing Luo, Haigang Wei, Yilong Ai
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2021
Materias:
Acceso en línea:https://doaj.org/article/9ac14b69174943968496c301a8aeb824
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Oral squamous cell carcinoma (OSCC) is one of the most common cancer types of head and neck cancer, accounting for 95% of all cases. However, the mechanisms underlying the pathogenesis of OSCC remain unclear. Circular RNA (CircRNA) has been extensively studied in the past decades and is a promising direction for the development of OSCC therapeutic targets. In this study, we aimed to investigate the role of circMTO1 in OSCC progression. First, we validated the characterization and expression of circMTO1 in OSCC. It was found that circMTO1 was upregulated in OSCC tumor tissues and cells. Subsequently, we conducted biological experiments. It was found that circMTO1 knockdown inhibited OSCC cell proliferation, migration, and invasion. Furthermore, we conducted a series of experiments to elucidate the underlying mechanisms. A novel circMTO1/miR-320a/ATRX axis was identified. Our results suggest that circMTO1 modulates ATRX expression to accelerate OSCC progression by sponging miR-320a. Moreover, we found that circMTO1 expression in OSCC was transcriptionally regulated by Zinc Finger Protein 460 (ZNF460). Our study showed a novel ZNF460/circMTO1/miR-320a/ATRX signaling in OSCC development.