GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells

Maryam Hafizi,1 Somayeh Kalanaky,1 Saideh Fakharzadeh,1 Ehsan Janzamin,2 Tarlan Arjmandi,1 Amir Atashi,3,* Mohammad Hassan Nazaran1,* 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2Flowcyt Science-Based Company, Tehran, Iran; 3Stem Cell and Tissue Engineering Re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hafizi M, Kalanaky S, Fakharzadeh S, Janzamin E, Arjmandi T, Atashi A, Nazaran MH
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/9ac6a82000e14c3f860f805c4274f650
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ac6a82000e14c3f860f805c4274f650
record_format dspace
spelling oai:doaj.org-article:9ac6a82000e14c3f860f805c4274f6502021-12-02T03:36:17ZGFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells1178-2013https://doaj.org/article/9ac6a82000e14c3f860f805c4274f6502020-08-01T00:00:00Zhttps://www.dovepress.com/gfc7-as-a-smart-growth-nanofactor-for-ex-vivo-expansion-and-cryoprotec-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Maryam Hafizi,1 Somayeh Kalanaky,1 Saideh Fakharzadeh,1 Ehsan Janzamin,2 Tarlan Arjmandi,1 Amir Atashi,3,* Mohammad Hassan Nazaran1,* 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2Flowcyt Science-Based Company, Tehran, Iran; 3Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran*These authors contributed equally to this workCorrespondence: Amir Atashi; Mohammad Hassan Nazaran Tel/Fax +98 23 3239 45000; +98 21 8899 2123Email atashia@shmu.ac.ir; mnazaran@nanochelatingtechnology.comBackground: Nowadays, smart synthesized nanostructures have attracted wide attention in the field of stem cell nanotechnology due to their effect on different properties of stem cells.Methods: GFc7 growth nanofactor was synthesized based on nanochelating technology as an iron-containing copper chelator nanocomplex. The effect of this nanocomplex on the expansion and differentiation of hematopoietic stem cells (HSCs) as well as its performance as a cryoprotectant was evaluated in the present study.Results: The results showed that the absolute count of CD34+ and CD34+CD38− cells on days 4, 7, 10 and 13; the percentage of lactate dehydrogenase enzyme on the same days and CD34+CXCR4 population on day 10 were significantly increased when they were treated with GFc7 growth nanofactor in a fetal bovine serum (FBS)-free medium. This medium also led to delayed differentiation in HSCs. One noticeable result was that CD34+CD38− cells cultured in an FBS medium were immediately differentiated into CD34+CD38+ cells, while CD34+CD38− cells treated with GFc7 growth nanofactor in FBS medium did not show such an immediate significant differentiation. De-freezing GFc7-treated CD34+ cells, which were already frozen according to cord blood bank protocols, showed a higher percentage of cell viability and a larger number of colonies according to colony-forming cell assay as compared to control.Conclusion: It can be claimed that treating HSCs with GFc7 growth nanofactor leads to quality and quantity improvement of HSCs, both in terms of expansion in vitro and freezing and de-freezing processes.Keywords: expansion, GFc7, human hematopoietic stem cells, nanocomplex, nanochelating technologyHafizi MKalanaky SFakharzadeh SJanzamin EArjmandi TAtashi ANazaran MHDove Medical Pressarticleexpansiongfc7human hematopoietic stem cellsnanocomplexnanochelating technology.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 6263-6277 (2020)
institution DOAJ
collection DOAJ
language EN
topic expansion
gfc7
human hematopoietic stem cells
nanocomplex
nanochelating technology.
Medicine (General)
R5-920
spellingShingle expansion
gfc7
human hematopoietic stem cells
nanocomplex
nanochelating technology.
Medicine (General)
R5-920
Hafizi M
Kalanaky S
Fakharzadeh S
Janzamin E
Arjmandi T
Atashi A
Nazaran MH
GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells
description Maryam Hafizi,1 Somayeh Kalanaky,1 Saideh Fakharzadeh,1 Ehsan Janzamin,2 Tarlan Arjmandi,1 Amir Atashi,3,* Mohammad Hassan Nazaran1,* 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2Flowcyt Science-Based Company, Tehran, Iran; 3Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran*These authors contributed equally to this workCorrespondence: Amir Atashi; Mohammad Hassan Nazaran Tel/Fax +98 23 3239 45000; +98 21 8899 2123Email atashia@shmu.ac.ir; mnazaran@nanochelatingtechnology.comBackground: Nowadays, smart synthesized nanostructures have attracted wide attention in the field of stem cell nanotechnology due to their effect on different properties of stem cells.Methods: GFc7 growth nanofactor was synthesized based on nanochelating technology as an iron-containing copper chelator nanocomplex. The effect of this nanocomplex on the expansion and differentiation of hematopoietic stem cells (HSCs) as well as its performance as a cryoprotectant was evaluated in the present study.Results: The results showed that the absolute count of CD34+ and CD34+CD38− cells on days 4, 7, 10 and 13; the percentage of lactate dehydrogenase enzyme on the same days and CD34+CXCR4 population on day 10 were significantly increased when they were treated with GFc7 growth nanofactor in a fetal bovine serum (FBS)-free medium. This medium also led to delayed differentiation in HSCs. One noticeable result was that CD34+CD38− cells cultured in an FBS medium were immediately differentiated into CD34+CD38+ cells, while CD34+CD38− cells treated with GFc7 growth nanofactor in FBS medium did not show such an immediate significant differentiation. De-freezing GFc7-treated CD34+ cells, which were already frozen according to cord blood bank protocols, showed a higher percentage of cell viability and a larger number of colonies according to colony-forming cell assay as compared to control.Conclusion: It can be claimed that treating HSCs with GFc7 growth nanofactor leads to quality and quantity improvement of HSCs, both in terms of expansion in vitro and freezing and de-freezing processes.Keywords: expansion, GFc7, human hematopoietic stem cells, nanocomplex, nanochelating technology
format article
author Hafizi M
Kalanaky S
Fakharzadeh S
Janzamin E
Arjmandi T
Atashi A
Nazaran MH
author_facet Hafizi M
Kalanaky S
Fakharzadeh S
Janzamin E
Arjmandi T
Atashi A
Nazaran MH
author_sort Hafizi M
title GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells
title_short GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells
title_full GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells
title_fullStr GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells
title_full_unstemmed GFc7 as a Smart Growth Nanofactor for ex vivo Expansion and Cryoprotection of Humans’ Hematopoietic Stem Cells
title_sort gfc7 as a smart growth nanofactor for ex vivo expansion and cryoprotection of humans’ hematopoietic stem cells
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/9ac6a82000e14c3f860f805c4274f650
work_keys_str_mv AT hafizim gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
AT kalanakys gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
AT fakharzadehs gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
AT janzamine gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
AT arjmandit gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
AT atashia gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
AT nazaranmh gfc7asasmartgrowthnanofactorforexvivoexpansionandcryoprotectionofhumansrsquohematopoieticstemcells
_version_ 1718401684633288704