New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points

Abstract Let E be a real Banach space with dual space E∗ $E^{*}$. A new class of relatively weak J-nonexpansive maps, T:E→E∗ $T:E\rightarrow E^{*}$, is introduced and studied. An algorithm to approximate a common element of J-fixed points for a countable family of relatively weak J-nonexpansive maps...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Charles E. Chidume, Chinedu G. Ezea
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2020
Materias:
Acceso en línea:https://doaj.org/article/9ac7be11ce6747b6bc5e2947e13935ca
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let E be a real Banach space with dual space E∗ $E^{*}$. A new class of relatively weak J-nonexpansive maps, T:E→E∗ $T:E\rightarrow E^{*}$, is introduced and studied. An algorithm to approximate a common element of J-fixed points for a countable family of relatively weak J-nonexpansive maps and zeros of a countable family of inverse strongly monotone maps in a 2-uniformly convex and uniformly smooth real Banach space is constructed. Furthermore, assuming existence, the sequence of the algorithm is proved to converge strongly. Finally, a numerical example is given to illustrate the convergence of the sequence generated by the algorithm.