New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points

Abstract Let E be a real Banach space with dual space E∗ $E^{*}$. A new class of relatively weak J-nonexpansive maps, T:E→E∗ $T:E\rightarrow E^{*}$, is introduced and studied. An algorithm to approximate a common element of J-fixed points for a countable family of relatively weak J-nonexpansive maps...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Charles E. Chidume, Chinedu G. Ezea
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2020
Materias:
Acceso en línea:https://doaj.org/article/9ac7be11ce6747b6bc5e2947e13935ca
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ac7be11ce6747b6bc5e2947e13935ca
record_format dspace
spelling oai:doaj.org-article:9ac7be11ce6747b6bc5e2947e13935ca2021-12-02T13:57:57ZNew algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points10.1186/s13663-019-0668-11687-1812https://doaj.org/article/9ac7be11ce6747b6bc5e2947e13935ca2020-01-01T00:00:00Zhttps://doi.org/10.1186/s13663-019-0668-1https://doaj.org/toc/1687-1812Abstract Let E be a real Banach space with dual space E∗ $E^{*}$. A new class of relatively weak J-nonexpansive maps, T:E→E∗ $T:E\rightarrow E^{*}$, is introduced and studied. An algorithm to approximate a common element of J-fixed points for a countable family of relatively weak J-nonexpansive maps and zeros of a countable family of inverse strongly monotone maps in a 2-uniformly convex and uniformly smooth real Banach space is constructed. Furthermore, assuming existence, the sequence of the algorithm is proved to converge strongly. Finally, a numerical example is given to illustrate the convergence of the sequence generated by the algorithm.Charles E. ChidumeChinedu G. EzeaSpringerOpenarticleStrictly J-pseudocontractiveJ-Fixed pointZeros of inverse strongly monotone mapRelatively weak J-nonexpansive map2-Uniformly convex and uniformly smooth real Banach spaceApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2020, Iss 1, Pp 1-16 (2020)
institution DOAJ
collection DOAJ
language EN
topic Strictly J-pseudocontractive
J-Fixed point
Zeros of inverse strongly monotone map
Relatively weak J-nonexpansive map
2-Uniformly convex and uniformly smooth real Banach space
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Strictly J-pseudocontractive
J-Fixed point
Zeros of inverse strongly monotone map
Relatively weak J-nonexpansive map
2-Uniformly convex and uniformly smooth real Banach space
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Charles E. Chidume
Chinedu G. Ezea
New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
description Abstract Let E be a real Banach space with dual space E∗ $E^{*}$. A new class of relatively weak J-nonexpansive maps, T:E→E∗ $T:E\rightarrow E^{*}$, is introduced and studied. An algorithm to approximate a common element of J-fixed points for a countable family of relatively weak J-nonexpansive maps and zeros of a countable family of inverse strongly monotone maps in a 2-uniformly convex and uniformly smooth real Banach space is constructed. Furthermore, assuming existence, the sequence of the algorithm is proved to converge strongly. Finally, a numerical example is given to illustrate the convergence of the sequence generated by the algorithm.
format article
author Charles E. Chidume
Chinedu G. Ezea
author_facet Charles E. Chidume
Chinedu G. Ezea
author_sort Charles E. Chidume
title New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
title_short New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
title_full New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
title_fullStr New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
title_full_unstemmed New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
title_sort new algorithms for approximating zeros of inverse strongly monotone maps and j-fixed points
publisher SpringerOpen
publishDate 2020
url https://doaj.org/article/9ac7be11ce6747b6bc5e2947e13935ca
work_keys_str_mv AT charlesechidume newalgorithmsforapproximatingzerosofinversestronglymonotonemapsandjfixedpoints
AT chinedugezea newalgorithmsforapproximatingzerosofinversestronglymonotonemapsandjfixedpoints
_version_ 1718392275753500672