New algorithms for approximating zeros of inverse strongly monotone maps and J-fixed points
Abstract Let E be a real Banach space with dual space E∗ $E^{*}$. A new class of relatively weak J-nonexpansive maps, T:E→E∗ $T:E\rightarrow E^{*}$, is introduced and studied. An algorithm to approximate a common element of J-fixed points for a countable family of relatively weak J-nonexpansive maps...
Guardado en:
Autores principales: | Charles E. Chidume, Chinedu G. Ezea |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ac7be11ce6747b6bc5e2947e13935ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Strong convergence of an inertial algorithm for maximal monotone inclusions with applications
por: C. E. Chidume, et al.
Publicado: (2020) -
Common fixed points of monotone ρ-nonexpansive semigroup in modular spaces
por: Noureddine El Harmouchi, et al.
Publicado: (2020) -
A strong convergence theorem for generalized-Φ-strongly monotone maps, with applications
por: C. E. Chidume, et al.
Publicado: (2019) -
The iterative solutions of split common fixed point problem for asymptotically nonexpansive mappings in Banach spaces
por: Yuanheng Wang, et al.
Publicado: (2020) -
A new modified block iterative algorithm for uniformly quasi-<it>ϕ</it>-asymptotically nonexpansive mappings and a system of generalized mixed equilibrium problems
por: Saewan Siwaporn, et al.
Publicado: (2011)