A multi-task convolutional deep neural network for variant calling in single molecule sequencing
Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9ad545dd5e814a6f9351c9241b1c6be7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9ad545dd5e814a6f9351c9241b1c6be72021-12-02T16:57:43ZA multi-task convolutional deep neural network for variant calling in single molecule sequencing10.1038/s41467-019-09025-z2041-1723https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be72019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09025-zhttps://doaj.org/toc/2041-1723Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data.Ruibang LuoFritz J. SedlazeckTak-Wah LamMichael C. SchatzNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ruibang Luo Fritz J. Sedlazeck Tak-Wah Lam Michael C. Schatz A multi-task convolutional deep neural network for variant calling in single molecule sequencing |
description |
Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data. |
format |
article |
author |
Ruibang Luo Fritz J. Sedlazeck Tak-Wah Lam Michael C. Schatz |
author_facet |
Ruibang Luo Fritz J. Sedlazeck Tak-Wah Lam Michael C. Schatz |
author_sort |
Ruibang Luo |
title |
A multi-task convolutional deep neural network for variant calling in single molecule sequencing |
title_short |
A multi-task convolutional deep neural network for variant calling in single molecule sequencing |
title_full |
A multi-task convolutional deep neural network for variant calling in single molecule sequencing |
title_fullStr |
A multi-task convolutional deep neural network for variant calling in single molecule sequencing |
title_full_unstemmed |
A multi-task convolutional deep neural network for variant calling in single molecule sequencing |
title_sort |
multi-task convolutional deep neural network for variant calling in single molecule sequencing |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be7 |
work_keys_str_mv |
AT ruibangluo amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT fritzjsedlazeck amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT takwahlam amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT michaelcschatz amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT ruibangluo multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT fritzjsedlazeck multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT takwahlam multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing AT michaelcschatz multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing |
_version_ |
1718382516564393984 |