A multi-task convolutional deep neural network for variant calling in single molecule sequencing

Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data.

Guardado en:
Detalles Bibliográficos
Autores principales: Ruibang Luo, Fritz J. Sedlazeck, Tak-Wah Lam, Michael C. Schatz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ad545dd5e814a6f9351c9241b1c6be7
record_format dspace
spelling oai:doaj.org-article:9ad545dd5e814a6f9351c9241b1c6be72021-12-02T16:57:43ZA multi-task convolutional deep neural network for variant calling in single molecule sequencing10.1038/s41467-019-09025-z2041-1723https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be72019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09025-zhttps://doaj.org/toc/2041-1723Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data.Ruibang LuoFritz J. SedlazeckTak-Wah LamMichael C. SchatzNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ruibang Luo
Fritz J. Sedlazeck
Tak-Wah Lam
Michael C. Schatz
A multi-task convolutional deep neural network for variant calling in single molecule sequencing
description Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data.
format article
author Ruibang Luo
Fritz J. Sedlazeck
Tak-Wah Lam
Michael C. Schatz
author_facet Ruibang Luo
Fritz J. Sedlazeck
Tak-Wah Lam
Michael C. Schatz
author_sort Ruibang Luo
title A multi-task convolutional deep neural network for variant calling in single molecule sequencing
title_short A multi-task convolutional deep neural network for variant calling in single molecule sequencing
title_full A multi-task convolutional deep neural network for variant calling in single molecule sequencing
title_fullStr A multi-task convolutional deep neural network for variant calling in single molecule sequencing
title_full_unstemmed A multi-task convolutional deep neural network for variant calling in single molecule sequencing
title_sort multi-task convolutional deep neural network for variant calling in single molecule sequencing
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be7
work_keys_str_mv AT ruibangluo amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT fritzjsedlazeck amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT takwahlam amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT michaelcschatz amultitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT ruibangluo multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT fritzjsedlazeck multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT takwahlam multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
AT michaelcschatz multitaskconvolutionaldeepneuralnetworkforvariantcallinginsinglemoleculesequencing
_version_ 1718382516564393984