A multi-task convolutional deep neural network for variant calling in single molecule sequencing
Single Molecule Sequencing (SMS) technologies generate long but noisy reads data. Here, the authors develop Clairvoyante, a deep neural network-based method for variant calling with SMS reads such as PacBio and ONT data.
Guardado en:
Autores principales: | Ruibang Luo, Fritz J. Sedlazeck, Tak-Wah Lam, Michael C. Schatz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ad545dd5e814a6f9351c9241b1c6be7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust face recognition based on multi-task convolutional neural network
por: Huilin Ge, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019) -
Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing
por: Peter Edge, et al.
Publicado: (2019) -
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN).
por: Maleika Heenaye-Mamode Khan, et al.
Publicado: (2021) -
Multi-Stream Deep Convolutional Neural Network for PET Preform Surface Defects Detection and Classification
por: Taochuan Zhang, et al.
Publicado: (2021)