Analog Schwarzschild Black Hole from a Nonisentropic Fluid
We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the s...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ae3095180be4556aad0f3f90efe7ce0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9ae3095180be4556aad0f3f90efe7ce0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9ae3095180be4556aad0f3f90efe7ce02021-11-25T19:09:34ZAnalog Schwarzschild Black Hole from a Nonisentropic Fluid10.3390/universe71104132218-1997https://doaj.org/article/9ae3095180be4556aad0f3f90efe7ce02021-10-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/413https://doaj.org/toc/2218-1997We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the speed of light, this implies that analog Schwarzschild geometry necessarily breaks down behind the horizon.Neven BilićHrvoje NikolićMDPI AGarticleanalog gravitySchwarzschild metricnonisentropic fluidElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 413, p 413 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
analog gravity Schwarzschild metric nonisentropic fluid Elementary particle physics QC793-793.5 |
spellingShingle |
analog gravity Schwarzschild metric nonisentropic fluid Elementary particle physics QC793-793.5 Neven Bilić Hrvoje Nikolić Analog Schwarzschild Black Hole from a Nonisentropic Fluid |
description |
We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the speed of light, this implies that analog Schwarzschild geometry necessarily breaks down behind the horizon. |
format |
article |
author |
Neven Bilić Hrvoje Nikolić |
author_facet |
Neven Bilić Hrvoje Nikolić |
author_sort |
Neven Bilić |
title |
Analog Schwarzschild Black Hole from a Nonisentropic Fluid |
title_short |
Analog Schwarzschild Black Hole from a Nonisentropic Fluid |
title_full |
Analog Schwarzschild Black Hole from a Nonisentropic Fluid |
title_fullStr |
Analog Schwarzschild Black Hole from a Nonisentropic Fluid |
title_full_unstemmed |
Analog Schwarzschild Black Hole from a Nonisentropic Fluid |
title_sort |
analog schwarzschild black hole from a nonisentropic fluid |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/9ae3095180be4556aad0f3f90efe7ce0 |
work_keys_str_mv |
AT nevenbilic analogschwarzschildblackholefromanonisentropicfluid AT hrvojenikolic analogschwarzschildblackholefromanonisentropicfluid |
_version_ |
1718410232884887552 |