Analog Schwarzschild Black Hole from a Nonisentropic Fluid

We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Neven Bilić, Hrvoje Nikolić
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/9ae3095180be4556aad0f3f90efe7ce0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ae3095180be4556aad0f3f90efe7ce0
record_format dspace
spelling oai:doaj.org-article:9ae3095180be4556aad0f3f90efe7ce02021-11-25T19:09:34ZAnalog Schwarzschild Black Hole from a Nonisentropic Fluid10.3390/universe71104132218-1997https://doaj.org/article/9ae3095180be4556aad0f3f90efe7ce02021-10-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/413https://doaj.org/toc/2218-1997We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the speed of light, this implies that analog Schwarzschild geometry necessarily breaks down behind the horizon.Neven BilićHrvoje NikolićMDPI AGarticleanalog gravitySchwarzschild metricnonisentropic fluidElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 413, p 413 (2021)
institution DOAJ
collection DOAJ
language EN
topic analog gravity
Schwarzschild metric
nonisentropic fluid
Elementary particle physics
QC793-793.5
spellingShingle analog gravity
Schwarzschild metric
nonisentropic fluid
Elementary particle physics
QC793-793.5
Neven Bilić
Hrvoje Nikolić
Analog Schwarzschild Black Hole from a Nonisentropic Fluid
description We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the speed of light, this implies that analog Schwarzschild geometry necessarily breaks down behind the horizon.
format article
author Neven Bilić
Hrvoje Nikolić
author_facet Neven Bilić
Hrvoje Nikolić
author_sort Neven Bilić
title Analog Schwarzschild Black Hole from a Nonisentropic Fluid
title_short Analog Schwarzschild Black Hole from a Nonisentropic Fluid
title_full Analog Schwarzschild Black Hole from a Nonisentropic Fluid
title_fullStr Analog Schwarzschild Black Hole from a Nonisentropic Fluid
title_full_unstemmed Analog Schwarzschild Black Hole from a Nonisentropic Fluid
title_sort analog schwarzschild black hole from a nonisentropic fluid
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/9ae3095180be4556aad0f3f90efe7ce0
work_keys_str_mv AT nevenbilic analogschwarzschildblackholefromanonisentropicfluid
AT hrvojenikolic analogschwarzschildblackholefromanonisentropicfluid
_version_ 1718410232884887552