CoolMomentum: a method for stochastic optimization by Langevin dynamics with simulated annealing

Abstract Deep learning applications require global optimization of non-convex objective functions, which have multiple local minima. The same problem is often found in physical simulations and may be resolved by the methods of Langevin dynamics with Simulated Annealing, which is a well-established a...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Oleksandr Borysenko, Maksym Byshkin
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/9ae814904dc54f65a9749af760cb5d73
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires