Survival probability of stochastic processes beyond persistence exponents
The survival probability of a random walker is the probability that a particular target has not been reached by time t. Here the authors produce a formula for the prefactor involved in the expression of the survival probability which is shown to hold for both Markovian and non-Markovian processes.
Guardado en:
Autores principales: | N. Levernier, M. Dolgushev, O. Bénichou, R. Voituriez, T. Guérin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9aeb6d8782ee4b6ea00fd7c23c234714 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Universal kinetics of imperfect reactions in confinement
por: Thomas Guérin, et al.
Publicado: (2021) -
Experimental Measurement of Relative Path Probabilities and Stochastic Actions
por: Jannes Gladrow, et al.
Publicado: (2021) -
Beyond the chemical master equation: Stochastic chemical kinetics coupled with auxiliary processes.
por: Davin Lunz, et al.
Publicado: (2021) -
Stochastic modelling of cellulose hydrolysis with Gauss and Weibull distributed transition probabilities
por: Joseph Mcgreg Duru, et al.
Publicado: (2021) -
Stochastics an international journal of probability and stochastic processes.
Publicado: (2005)