ReSe2-Based RRAM and Circuit-Level Model for Neuromorphic Computing
Resistive random-access memory (RRAM) devices have drawn increasing interest for the simplicity of its structure, low power consumption and applicability to neuromorphic computing. By combining analog computing and data storage at the device level, neuromorphic computing system has the potential to...
Guardado en:
Autores principales: | Yifu Huang, Yuqian Gu, Xiaohan Wu, Ruijing Ge, Yao-Feng Chang, Xiyu Wang, Jiahan Zhang, Deji Akinwande, Jack C. Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9afa5e0c0f2444b793a6d66fb61d8136 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NeuroSOFM: A Neuromorphic Self-Organizing Feature Map Heterogeneously Integrating RRAM and FeFET
por: Siddharth Barve, et al.
Publicado: (2021) -
A Fully Integrated Reprogrammable CMOS-RRAM Compute-in-Memory Coprocessor for Neuromorphic Applications
por: Justin M. Correll, et al.
Publicado: (2020) -
Conduction Mechanisms on High Retention Annealed MgO-based Resistive Switching Memory Devices
por: D. J. J. Loy, et al.
Publicado: (2018) -
Multi-Terminal Memristive Devices Enabling Tunable Synaptic Plasticity in Neuromorphic Hardware: A Mini-Review
por: Yann Beilliard, et al.
Publicado: (2021) -
Toward Learning in Neuromorphic Circuits Based on Quantum Phase Slip Junctions
por: Ran Cheng, et al.
Publicado: (2021)