A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate

Hyun Woo Son,1,* Minhong Jeun,1,* Jaewon Choi,1,2 Kwan Hyi Lee1,2 1Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 2Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea *These authors...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Son HW, Jeun M, Choi J, Lee KH
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/9b06f493f60a4860ae1d0079b887988f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9b06f493f60a4860ae1d0079b887988f
record_format dspace
spelling oai:doaj.org-article:9b06f493f60a4860ae1d0079b887988f2021-12-02T00:37:18ZA strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate1178-2013https://doaj.org/article/9b06f493f60a4860ae1d0079b887988f2017-04-01T00:00:00Zhttps://www.dovepress.com/a-strategy-to-minimize-the-sensing-voltage-drift-error-in-a-transistor-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Hyun Woo Son,1,* Minhong Jeun,1,* Jaewon Choi,1,2 Kwan Hyi Lee1,2 1Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 2Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: An ion-sensitive field-effect transistor (ISFET) biosensor is thought to be the center of the next era of health diagnosis. However, questions are raised about its functions and reliability in liquid samples. Consequently, real-life clinical applications are few in number. In this study, we report a strategy to minimize the sensing signal drift error during bioanalyte detection in an ISFET biosensor. A nanoscale SnO2 thin film is used as a gate oxide layer (GOL), and the surface of the GOL is chemically modified for improving bioanalyte-specific binding and for reducing undesirable ion reactions in sample solutions. The ISFET biosensor with surface-modified GOL shows significantly reduced sensing signal error compared with an ISFET with bare GOL in both diluted and undiluted phosphate buffered saline solutions. Keywords: extended gate, surface treatment, biosensor, SnO2, ISFETSon HWJeun MChoi JLee KHDove Medical PressarticleBiosensortransistorSnO2voltage Driftsensing gateMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 2951-2956 (2017)
institution DOAJ
collection DOAJ
language EN
topic Biosensor
transistor
SnO2
voltage Drift
sensing gate
Medicine (General)
R5-920
spellingShingle Biosensor
transistor
SnO2
voltage Drift
sensing gate
Medicine (General)
R5-920
Son HW
Jeun M
Choi J
Lee KH
A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
description Hyun Woo Son,1,* Minhong Jeun,1,* Jaewon Choi,1,2 Kwan Hyi Lee1,2 1Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 2Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: An ion-sensitive field-effect transistor (ISFET) biosensor is thought to be the center of the next era of health diagnosis. However, questions are raised about its functions and reliability in liquid samples. Consequently, real-life clinical applications are few in number. In this study, we report a strategy to minimize the sensing signal drift error during bioanalyte detection in an ISFET biosensor. A nanoscale SnO2 thin film is used as a gate oxide layer (GOL), and the surface of the GOL is chemically modified for improving bioanalyte-specific binding and for reducing undesirable ion reactions in sample solutions. The ISFET biosensor with surface-modified GOL shows significantly reduced sensing signal error compared with an ISFET with bare GOL in both diluted and undiluted phosphate buffered saline solutions. Keywords: extended gate, surface treatment, biosensor, SnO2, ISFET
format article
author Son HW
Jeun M
Choi J
Lee KH
author_facet Son HW
Jeun M
Choi J
Lee KH
author_sort Son HW
title A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
title_short A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
title_full A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
title_fullStr A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
title_full_unstemmed A strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
title_sort strategy to minimize the sensing voltage drift error in a transistor biosensor with a nanoscale sensing gate
publisher Dove Medical Press
publishDate 2017
url https://doaj.org/article/9b06f493f60a4860ae1d0079b887988f
work_keys_str_mv AT sonhw astrategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT jeunm astrategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT choij astrategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT leekh astrategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT sonhw strategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT jeunm strategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT choij strategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
AT leekh strategytominimizethesensingvoltagedrifterrorinatransistorbiosensorwithananoscalesensinggate
_version_ 1718403634238062592