Domination and Power Domination in Certain Families of Nanostars Dendrimers
Dendrimers are hyper-branched macromolecules having various applications in diverse fields like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as dominating number and power dominating number can be used to characterize large number of physical pro...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b0bd000b37a499094f650739cf98181 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9b0bd000b37a499094f650739cf98181 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9b0bd000b37a499094f650739cf981812021-12-04T00:00:12ZDomination and Power Domination in Certain Families of Nanostars Dendrimers2169-353610.1109/ACCESS.2020.3007891https://doaj.org/article/9b0bd000b37a499094f650739cf981812020-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9136716/https://doaj.org/toc/2169-3536Dendrimers are hyper-branched macromolecules having various applications in diverse fields like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as dominating number and power dominating number can be used to characterize large number of physical properties like physio-chemical properties, thermodynamic properties, chemical and biological activities, etc. A subset of a simple undirected graph is called dominating set if every vertex of the given graph is either in that set or is adjacent to some vertex in that set. The minimum number of elements in that kind of set is called domination number. A subset of the vertex set of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is said to be power dominating set (PDS) of <inline-formula> <tex-math notation="LaTeX">${G}$ </tex-math></inline-formula>, if every vertex and every edge in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is observed by <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>. The minimum cardinality of <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is called power domination number. In this paper, the domination number and power domination number of some nanostars dendrimers have been determined.Tanveer IqbalMuhammad ImranSyed Ahtsham Ul Haq BokharyIEEEarticleDomination numberpower domination numberdendrimersElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 8, Pp 130947-130951 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Domination number power domination number dendrimers Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Domination number power domination number dendrimers Electrical engineering. Electronics. Nuclear engineering TK1-9971 Tanveer Iqbal Muhammad Imran Syed Ahtsham Ul Haq Bokhary Domination and Power Domination in Certain Families of Nanostars Dendrimers |
description |
Dendrimers are hyper-branched macromolecules having various applications in diverse fields like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as dominating number and power dominating number can be used to characterize large number of physical properties like physio-chemical properties, thermodynamic properties, chemical and biological activities, etc. A subset of a simple undirected graph is called dominating set if every vertex of the given graph is either in that set or is adjacent to some vertex in that set. The minimum number of elements in that kind of set is called domination number. A subset of the vertex set of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is said to be power dominating set (PDS) of <inline-formula> <tex-math notation="LaTeX">${G}$ </tex-math></inline-formula>, if every vertex and every edge in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is observed by <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>. The minimum cardinality of <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is called power domination number. In this paper, the domination number and power domination number of some nanostars dendrimers have been determined. |
format |
article |
author |
Tanveer Iqbal Muhammad Imran Syed Ahtsham Ul Haq Bokhary |
author_facet |
Tanveer Iqbal Muhammad Imran Syed Ahtsham Ul Haq Bokhary |
author_sort |
Tanveer Iqbal |
title |
Domination and Power Domination in Certain Families of Nanostars Dendrimers |
title_short |
Domination and Power Domination in Certain Families of Nanostars Dendrimers |
title_full |
Domination and Power Domination in Certain Families of Nanostars Dendrimers |
title_fullStr |
Domination and Power Domination in Certain Families of Nanostars Dendrimers |
title_full_unstemmed |
Domination and Power Domination in Certain Families of Nanostars Dendrimers |
title_sort |
domination and power domination in certain families of nanostars dendrimers |
publisher |
IEEE |
publishDate |
2020 |
url |
https://doaj.org/article/9b0bd000b37a499094f650739cf98181 |
work_keys_str_mv |
AT tanveeriqbal dominationandpowerdominationincertainfamiliesofnanostarsdendrimers AT muhammadimran dominationandpowerdominationincertainfamiliesofnanostarsdendrimers AT syedahtshamulhaqbokhary dominationandpowerdominationincertainfamiliesofnanostarsdendrimers |
_version_ |
1718373045342568448 |