Domination and Power Domination in Certain Families of Nanostars Dendrimers

Dendrimers are hyper-branched macromolecules having various applications in diverse fields like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as dominating number and power dominating number can be used to characterize large number of physical pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tanveer Iqbal, Muhammad Imran, Syed Ahtsham Ul Haq Bokhary
Formato: article
Lenguaje:EN
Publicado: IEEE 2020
Materias:
Acceso en línea:https://doaj.org/article/9b0bd000b37a499094f650739cf98181
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9b0bd000b37a499094f650739cf98181
record_format dspace
spelling oai:doaj.org-article:9b0bd000b37a499094f650739cf981812021-12-04T00:00:12ZDomination and Power Domination in Certain Families of Nanostars Dendrimers2169-353610.1109/ACCESS.2020.3007891https://doaj.org/article/9b0bd000b37a499094f650739cf981812020-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9136716/https://doaj.org/toc/2169-3536Dendrimers are hyper-branched macromolecules having various applications in diverse fields like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as dominating number and power dominating number can be used to characterize large number of physical properties like physio-chemical properties, thermodynamic properties, chemical and biological activities, etc. A subset of a simple undirected graph is called dominating set if every vertex of the given graph is either in that set or is adjacent to some vertex in that set. The minimum number of elements in that kind of set is called domination number. A subset of the vertex set of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is said to be power dominating set (PDS) of <inline-formula> <tex-math notation="LaTeX">${G}$ </tex-math></inline-formula>, if every vertex and every edge in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is observed by <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>. The minimum cardinality of <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is called power domination number. In this paper, the domination number and power domination number of some nanostars dendrimers have been determined.Tanveer IqbalMuhammad ImranSyed Ahtsham Ul Haq BokharyIEEEarticleDomination numberpower domination numberdendrimersElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 8, Pp 130947-130951 (2020)
institution DOAJ
collection DOAJ
language EN
topic Domination number
power domination number
dendrimers
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Domination number
power domination number
dendrimers
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Tanveer Iqbal
Muhammad Imran
Syed Ahtsham Ul Haq Bokhary
Domination and Power Domination in Certain Families of Nanostars Dendrimers
description Dendrimers are hyper-branched macromolecules having various applications in diverse fields like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as dominating number and power dominating number can be used to characterize large number of physical properties like physio-chemical properties, thermodynamic properties, chemical and biological activities, etc. A subset of a simple undirected graph is called dominating set if every vertex of the given graph is either in that set or is adjacent to some vertex in that set. The minimum number of elements in that kind of set is called domination number. A subset of the vertex set of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is said to be power dominating set (PDS) of <inline-formula> <tex-math notation="LaTeX">${G}$ </tex-math></inline-formula>, if every vertex and every edge in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is observed by <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>. The minimum cardinality of <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is called power domination number. In this paper, the domination number and power domination number of some nanostars dendrimers have been determined.
format article
author Tanveer Iqbal
Muhammad Imran
Syed Ahtsham Ul Haq Bokhary
author_facet Tanveer Iqbal
Muhammad Imran
Syed Ahtsham Ul Haq Bokhary
author_sort Tanveer Iqbal
title Domination and Power Domination in Certain Families of Nanostars Dendrimers
title_short Domination and Power Domination in Certain Families of Nanostars Dendrimers
title_full Domination and Power Domination in Certain Families of Nanostars Dendrimers
title_fullStr Domination and Power Domination in Certain Families of Nanostars Dendrimers
title_full_unstemmed Domination and Power Domination in Certain Families of Nanostars Dendrimers
title_sort domination and power domination in certain families of nanostars dendrimers
publisher IEEE
publishDate 2020
url https://doaj.org/article/9b0bd000b37a499094f650739cf98181
work_keys_str_mv AT tanveeriqbal dominationandpowerdominationincertainfamiliesofnanostarsdendrimers
AT muhammadimran dominationandpowerdominationincertainfamiliesofnanostarsdendrimers
AT syedahtshamulhaqbokhary dominationandpowerdominationincertainfamiliesofnanostarsdendrimers
_version_ 1718373045342568448