Sentinel-2 and Landsat-8 Observations for Harmful Algae Blooms in a Small Eutrophic Lake

Widespread harmful cyanobacterial bloom is one of the most pressing concerns in lakes and reservoirs, resulting in a lot of negative ecological consequences and threatening public health. Ocean color instruments with low spatial resolution have been used to monitor cyanobacterial bloom in large lake...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miao Liu, Hong Ling, Dan Wu, Xiaomei Su, Zhigang Cao
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9b126c7e30bd4f2895d2aeb64b7a2f9f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Widespread harmful cyanobacterial bloom is one of the most pressing concerns in lakes and reservoirs, resulting in a lot of negative ecological consequences and threatening public health. Ocean color instruments with low spatial resolution have been used to monitor cyanobacterial bloom in large lakes; however, they cannot be applied to small water bodies well. Here, the Multi-Spectral Instrument (MSI) onboard Sentinel-2A and -2B and the Operational Landsat Imager (OLI) onboard Landsat-8 were employed to assemble the virtual constellation and to track spatial and seasonal variations in floating algae blooms from 2016 to 2020 in a small eutrophic plateau lake: Lake Xingyun in China. The floating algae index (FAI) was calculated using Rayleigh-corrected reflectance in the red, near-infrared, and short-wave infrared bands. The MSI-derived FAI had a similar pattern to the OLI-derived FAI, with a mean absolute percentage error of 19.98% and unbiased percentage difference of 17.05%. Then, an FAI threshold, 0.0693, was determined using bimodal histograms of FAI images for floating algae extraction. The floating algae had a higher occurrence in the northern region than the southern region in this lake, whilst the occurrence of floating algae in summer and autumn was higher than that in spring and winter. Such a spatial and seasonal pattern was related to the variability in air temperature, wind speed and direction, and nutrients. The climatological annual mean occurrence of floating algae from 2016 to 2020 in Lake Xingyun exhibited a significant decrease, which was related to decreases in nutrients, resulting from efficient ecological restoration by the local government. This research highlighted the application of OLI-MSI virtual constellation on monitoring floating algae in a small lake, providing a practical and theoretical reference to monitor aquatic environments in small water bodies.