Morphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networks
Advanced microscopy techniques currently allow scientists to visualize biomolecules at high resolution. Among them, atomic force microscopy (AFM) shows the advantage of imaging molecules in their native state, without requiring any staining or coating of the sample. Biopolymers, including proteins a...
Guardado en:
Autores principales: | Soledad Delgado, Miguel Moreno, Luis F. Vazquez, Jose Angel Martingago, Carlos Briones |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b13c643379442cf84ef22dc09941a30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Revealing DNA Structure at Liquid/Solid Interfaces by AFM-Based High-Resolution Imaging and Molecular Spectroscopy
por: Ewelina Lipiec, et al.
Publicado: (2021) -
Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats
por: Andrea Ehrmann, et al.
Publicado: (2021) -
Integration of Fluorescent, NV-Rich Nanodiamond Particles with AFM Cantilevers by Focused Ion Beam for Hybrid Optical and Micromechanical Devices
por: Mateusz Ficek, et al.
Publicado: (2021) -
Preliminary report on MFM measurements on magnetic nanofiber mats
por: Raphael Weiss, et al.
Publicado: (2021) -
Current status and perspectives in atomic force microscopy-based identification of cellular transformation
por: Dong C, et al.
Publicado: (2016)