Energy‐Efficient Memristive Euclidean Distance Engine for Brain‐Inspired Competitive Learning
Inspired by competitive rules of the nature, competitive learning contributes to the specialization of the human brain and the general creativity of mankind. However, the construction of hardware competitive learning neural network still faces great challenges due to the lack of an accurate distance...
Guardado en:
Autores principales: | Houji Zhou, Jia Chen, Yinan Wang, Sen Liu, Yi Li, Qingjiang Li, Qi Liu, Zhongrui Wang, Yuhui He, Hui Xu, Xiangshui Miao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b241c76c298406f8ec126d570d6e327 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural Network Physically Unclonable Function: A Trainable Physically Unclonable Function System with Unassailability against Deep Learning Attacks Using Memristor Array
por: Junkyu Park, et al.
Publicado: (2021) -
Development of a Cell‐Loading Microrobot with Simultaneously Improved Degradability and Mechanical Strength for Performing In Vivo Delivery Tasks
por: Tanyong Wei, et al.
Publicado: (2021) -
Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wide‐Range Pressure Detection
por: Jing Li, et al.
Publicado: (2021) -
Stretchable, Multifunctional Epidermal Sensor Patch for Surface Electromyography and Strain Measurements
por: Chengjun Wang, et al.
Publicado: (2021) -
Brownian Cargo Capture in Mazes via Intelligent Colloidal Microrobot Swarms
por: Kun Xu, et al.
Publicado: (2021)