Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorp...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b2b92222bdc44d895126edbc58fc440 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9b2b92222bdc44d895126edbc58fc440 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9b2b92222bdc44d895126edbc58fc4402021-12-02T19:08:48ZAlgebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds2300-744310.1515/coma-2019-0004https://doaj.org/article/9b2b92222bdc44d895126edbc58fc4402019-02-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0004https://doaj.org/toc/2300-7443It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorphic Poisson structure. We also identify a sufficient condition for this isomorphism to be at the level of Gerstenhaber algebras.Poon Yat SunSimanyi JohnDe GruyterarticleMathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 88-102 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Poon Yat Sun Simanyi John Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds |
description |
It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorphic Poisson structure. We also identify a sufficient condition for this isomorphism to be at the level of Gerstenhaber algebras. |
format |
article |
author |
Poon Yat Sun Simanyi John |
author_facet |
Poon Yat Sun Simanyi John |
author_sort |
Poon Yat Sun |
title |
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds |
title_short |
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds |
title_full |
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds |
title_fullStr |
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds |
title_full_unstemmed |
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds |
title_sort |
algebraic structure of holomorphic poisson cohomology on nilmanifolds |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/9b2b92222bdc44d895126edbc58fc440 |
work_keys_str_mv |
AT poonyatsun algebraicstructureofholomorphicpoissoncohomologyonnilmanifolds AT simanyijohn algebraicstructureofholomorphicpoissoncohomologyonnilmanifolds |
_version_ |
1718377166376271872 |