Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds

It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Poon Yat Sun, Simanyi John
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/9b2b92222bdc44d895126edbc58fc440
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9b2b92222bdc44d895126edbc58fc440
record_format dspace
spelling oai:doaj.org-article:9b2b92222bdc44d895126edbc58fc4402021-12-02T19:08:48ZAlgebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds2300-744310.1515/coma-2019-0004https://doaj.org/article/9b2b92222bdc44d895126edbc58fc4402019-02-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0004https://doaj.org/toc/2300-7443It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorphic Poisson structure. We also identify a sufficient condition for this isomorphism to be at the level of Gerstenhaber algebras.Poon Yat SunSimanyi JohnDe GruyterarticleMathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 88-102 (2019)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Poon Yat Sun
Simanyi John
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
description It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorphic Poisson structure. We also identify a sufficient condition for this isomorphism to be at the level of Gerstenhaber algebras.
format article
author Poon Yat Sun
Simanyi John
author_facet Poon Yat Sun
Simanyi John
author_sort Poon Yat Sun
title Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
title_short Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
title_full Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
title_fullStr Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
title_full_unstemmed Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
title_sort algebraic structure of holomorphic poisson cohomology on nilmanifolds
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/9b2b92222bdc44d895126edbc58fc440
work_keys_str_mv AT poonyatsun algebraicstructureofholomorphicpoissoncohomologyonnilmanifolds
AT simanyijohn algebraicstructureofholomorphicpoissoncohomologyonnilmanifolds
_version_ 1718377166376271872