Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
It is proved that on nilmanifolds with abelian complex structure, there exists a canonically constructed non-trivial holomorphic Poisson structure.We identify the necessary and sufficient condition for its associated cohomology to be isomorphic to the cohomology associated to trivial (zero) holomorp...
Guardado en:
Autores principales: | Poon Yat Sun, Simanyi John |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b2b92222bdc44d895126edbc58fc440 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
por: Poon Yat Sun, et al.
Publicado: (2017) -
Real rectifiable currents, holomorphic chains and algebraic cycles
por: Teh Jyh-Haur, et al.
Publicado: (2021) -
Properties of Certain Classes of Holomorphic Functions Related to Strongly Janowski Type Function
por: Bushra Kanwal, et al.
Publicado: (2021) -
A characterization of real holomorphic chains and applications in representing homology classes by algebraic cycles
por: Teh Jyh-Haur, et al.
Publicado: (2020) -
Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds
por: Yamada Takumi
Publicado: (2017)