A hybrid deep neural network for classification of schizophrenia using EEG Data
Abstract Schizophrenia is a serious mental illness that causes great harm to patients, so timely and accurate detection is essential. This study aimed to identify a better feature to represent electroencephalography (EEG) signals and improve the classification accuracy of patients with schizophrenia...
Enregistré dans:
Auteurs principaux: | Jie Sun, Rui Cao, Mengni Zhou, Waqar Hussain, Bin Wang, Jiayue Xue, Jie Xiang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9b412826c98341fc94e5e087f0c1c1b8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
EEG microstate features for schizophrenia classification.
par: Kyungwon Kim, et autres
Publié: (2021) -
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
par: Amira Echtioui, et autres
Publié: (2021) -
Deep neural networks for active wave breaking classification
par: Caio Eadi Stringari, et autres
Publié: (2021) -
An improved data-free surrogate model for solving partial differential equations using deep neural networks
par: Xinhai Chen, et autres
Publié: (2021) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
par: Md Mahibul Hasan, et autres
Publié: (2021)