Learning surface molecular structures via machine vision
Machine learning: Computers automatically decode complex molecular patterns Complex patterns formed by thousands of molecules on a surface can now be automatically recognized and classified by a computer. Sergei Kalinin, Maxim Ziatdinov and Artem Maksov at Oak Ridge National Lab have developed a ‘ma...
Guardado en:
Autores principales: | Maxim Ziatdinov, Artem Maksov, Sergei V. Kalinin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b69d65a9f054d11bfb90d00872589e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
por: Christopher T. Nelson, et al.
Publicado: (2021)