The assessment of Levenberg–Marquardt and Bayesian Framework training algorithm for prediction of concrete shrinkage by the artificial neural network
Shrinkage and creep are the main concrete volume changes over time. This unacceptable concrete deformation leads to stress and cracks creation where eventually reduces the service life of concrete structures. According to this, the prediction of shrinkage and creep strain in concrete structures with...
Guardado en:
Autores principales: | Hosein Garoosiha, Jamal Ahmadi, Hossein Bayat |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b70cd49752142aa8fa7464af715c035 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of Lightweight Foamed Concrete Confinement with Woven Fiberglass Mesh on its Drying Shrinkage
por: Serudin,Anisah Mat, et al.
Publicado: (2021) -
Assessment of factors influencing the development of drying shrinkage in concretes produced in Cuba
por: Ramírez,Rafael, et al.
Publicado: (2019) -
SHRINKAGE AND CREEP CHARACTERISTICS OF PALM KERNEL SHELL CONCRETE
por: ADETUKASI ADESOLA OLAYINKA, et al.
Publicado: (2020) -
Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid
por: Jawaher Lafi Aljohani, et al.
Publicado: (2021) -
The atmospheric model of neural networks based on the improved Levenberg-Marquardt algorithm
por: Cui Wenhui, et al.
Publicado: (2021)