Integer-Only CNNs with 4 Bit Weights and Bit-Shift Quantization Scales at Full-Precision Accuracy
Quantization of neural networks has been one of the most popular techniques to compress models for embedded (IoT) hardware platforms with highly constrained latency, storage, memory-bandwidth, and energy specifications. Limiting the number of bits per weight and activation has been the main focus in...
Guardado en:
Autores principales: | Maarten Vandersteegen, Kristof Van Beeck, Toon Goedemé |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b83f42050394e609be6a8c4a4b79011 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BIT.
Publicado: (1995) -
A 9-Bit 1-GS/s Hybrid-Domain Pseudo-Pipelined SAR ADC Based on Variable Gain VTC and Segmented TDC
por: Suping Bai, et al.
Publicado: (2021) -
Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer
por: Mengyu An, et al.
Publicado: (2021) -
Trajectory Tracking Control for Underactuated USV with Prescribed Performance and Input Quantization
por: Kunyi Jiang, et al.
Publicado: (2021) -
Event-Driven Control for Switched Systems With Quantization and Packet Loss
por: Jingjing Yan, et al.
Publicado: (2020)