Integer-Only CNNs with 4 Bit Weights and Bit-Shift Quantization Scales at Full-Precision Accuracy
Quantization of neural networks has been one of the most popular techniques to compress models for embedded (IoT) hardware platforms with highly constrained latency, storage, memory-bandwidth, and energy specifications. Limiting the number of bits per weight and activation has been the main focus in...
Enregistré dans:
Auteurs principaux: | Maarten Vandersteegen, Kristof Van Beeck, Toon Goedemé |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9b83f42050394e609be6a8c4a4b79011 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
BIT.
Publié: (1995) -
A 9-Bit 1-GS/s Hybrid-Domain Pseudo-Pipelined SAR ADC Based on Variable Gain VTC and Segmented TDC
par: Suping Bai, et autres
Publié: (2021) -
Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer
par: Mengyu An, et autres
Publié: (2021) -
Trajectory Tracking Control for Underactuated USV with Prescribed Performance and Input Quantization
par: Kunyi Jiang, et autres
Publié: (2021) -
Event-Driven Control for Switched Systems With Quantization and Packet Loss
par: Jingjing Yan, et autres
Publié: (2020)