Comparison of deep learning systems and cornea specialists in detecting corneal diseases from low-quality images
Summary: The performance of deep learning in disease detection from high-quality clinical images is identical to and even greater than that of human doctors. However, in low-quality images, deep learning performs poorly. Whether human doctors also have poor performance in low-quality images is unkno...
Guardado en:
Autores principales: | Zhongwen Li, Jiewei Jiang, Wei Qiang, Liufei Guo, Xiaotian Liu, Hongfei Weng, Shanjun Wu, Qinxiang Zheng, Wei Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9b93422a7e1e42fcba8ab69db7af6fd6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Preventing corneal blindness caused by keratitis using artificial intelligence
por: Zhongwen Li, et al.
Publicado: (2021) -
Comparison of effect of nepafenac and diclofenac ophthalmic solutions on cornea, tear film, and ocular surface after cataract surgery: the results of a randomized trial
por: Kawahara A, et al.
Publicado: (2016) -
Artificial neural network-based smart aerogel glazing in low-energy buildings: A state-of-the-art review
por: Yuekuan Zhou
Publicado: (2021) -
The road to conscious machines: AI through failed ideas
por: Roman Krzanowski
Publicado: (2021) - Ai communications the European journal on artificial intelligence.