Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes

Abstract Shiga toxin-producing Escherichia coli serotype O157:H7 is a food and waterborne zoonotic pathogen causing gastroenteritis in humans. Rapid and simple detection in water and food is imperative to control its spread. However, traditional microbial detection approaches are time-consuming, exp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alka Rani, Vivek B. Ravindran, Aravind Surapaneni, Esmaeil Shahsavari, Nagalakshmi Haleyur, Nitin Mantri, Andrew S. Ball
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9bbd79b9363b4069b94ca0839cf32f4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9bbd79b9363b4069b94ca0839cf32f4e
record_format dspace
spelling oai:doaj.org-article:9bbd79b9363b4069b94ca0839cf32f4e2021-12-02T10:49:29ZEvaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes10.1038/s41598-021-81312-62045-2322https://doaj.org/article/9bbd79b9363b4069b94ca0839cf32f4e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81312-6https://doaj.org/toc/2045-2322Abstract Shiga toxin-producing Escherichia coli serotype O157:H7 is a food and waterborne zoonotic pathogen causing gastroenteritis in humans. Rapid and simple detection in water and food is imperative to control its spread. However, traditional microbial detection approaches are time-consuming, expensive and complex to operate at the point-of-care without professional training. We present a rapid, simple, sensitive, specific and portable method for detection of E. coli O157:H7 in drinking water, apple juice and milk. We evaluated the effect of gene selection in detecting E. coli O157:H7 using recombinase polymerase amplification coupled with a lateral flow assay using rfbE, fliC and stx gene targets. As low as 100 ag and 1 fg DNA, 4–5 CFU/mL and 101 CFU/mL of E. coli O157:H7 was detected using the stx and rfbE gene targets respectively with 100% specificity, whilst the detection limit was 10 fg DNA and 102 CFU/mL for the fliC gene target, with 72.8% specificity. The RPA-LFA can be completed within 8 min at temperatures between 37 and 42 °C with reduced handling and simple equipment requirements. The test threshold amplification of the target was achieved in 5–30 min of incubation. In conclusion, RPA-LFA represents a potential rapid and effective alternative to conventional methods for the monitoring of E. coli O157:H7 in food and water.Alka RaniVivek B. RavindranAravind SurapaneniEsmaeil ShahsavariNagalakshmi HaleyurNitin MantriAndrew S. BallNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alka Rani
Vivek B. Ravindran
Aravind Surapaneni
Esmaeil Shahsavari
Nagalakshmi Haleyur
Nitin Mantri
Andrew S. Ball
Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes
description Abstract Shiga toxin-producing Escherichia coli serotype O157:H7 is a food and waterborne zoonotic pathogen causing gastroenteritis in humans. Rapid and simple detection in water and food is imperative to control its spread. However, traditional microbial detection approaches are time-consuming, expensive and complex to operate at the point-of-care without professional training. We present a rapid, simple, sensitive, specific and portable method for detection of E. coli O157:H7 in drinking water, apple juice and milk. We evaluated the effect of gene selection in detecting E. coli O157:H7 using recombinase polymerase amplification coupled with a lateral flow assay using rfbE, fliC and stx gene targets. As low as 100 ag and 1 fg DNA, 4–5 CFU/mL and 101 CFU/mL of E. coli O157:H7 was detected using the stx and rfbE gene targets respectively with 100% specificity, whilst the detection limit was 10 fg DNA and 102 CFU/mL for the fliC gene target, with 72.8% specificity. The RPA-LFA can be completed within 8 min at temperatures between 37 and 42 °C with reduced handling and simple equipment requirements. The test threshold amplification of the target was achieved in 5–30 min of incubation. In conclusion, RPA-LFA represents a potential rapid and effective alternative to conventional methods for the monitoring of E. coli O157:H7 in food and water.
format article
author Alka Rani
Vivek B. Ravindran
Aravind Surapaneni
Esmaeil Shahsavari
Nagalakshmi Haleyur
Nitin Mantri
Andrew S. Ball
author_facet Alka Rani
Vivek B. Ravindran
Aravind Surapaneni
Esmaeil Shahsavari
Nagalakshmi Haleyur
Nitin Mantri
Andrew S. Ball
author_sort Alka Rani
title Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes
title_short Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes
title_full Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes
title_fullStr Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes
title_full_unstemmed Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes
title_sort evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for escherichia coli o157:h7 detection using diifeerent genes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9bbd79b9363b4069b94ca0839cf32f4e
work_keys_str_mv AT alkarani evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
AT vivekbravindran evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
AT aravindsurapaneni evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
AT esmaeilshahsavari evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
AT nagalakshmihaleyur evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
AT nitinmantri evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
AT andrewsball evaluationandcomparisonofrecombinasepolymeraseamplificationcoupledwithlateralflowbioassayforescherichiacolio157h7detectionusingdiifeerentgenes
_version_ 1718396607428296704