Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
Abstract As safety is one of the most important properties of drugs, chemical toxicology prediction has received increasing attentions in the drug discovery research. Traditionally, researchers rely on in vitro and in vivo experiments to test the toxicity of chemical compounds. However, not only are...
Guardado en:
Autores principales: | Jiarui Chen, Yain-Whar Si, Chon-Wai Un, Shirley W. I. Siu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9bc5fbb95f9047c3bbe067400ba1fe36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
ℓ<sub>1</sub>-norm based safe semi-supervised learning
por: Haitao Gan, et al.
Publicado: (2021) -
The Use of Information and Communication Technology (ICT) in the Implementation of Instructional Supervision and Its Effect on Teachers’ Instructional Process Quality
por: Bambang Budi Wiyono, et al.
Publicado: (2021)