Understanding Student Engagement in Large-Scale Open Online Courses: A Machine Learning Facilitated Analysis of Student’s Reflections in 18 Highly Rated MOOCs
Although massive open online courses (MOOCs) have attracted much worldwide attention, scholars still understand little about the specific elements that students find engaging in these large open courses. This study offers a new original contribution by using a machine learning classifier to analyze...
Guardado en:
Autores principales: | Khe Foon Hew, Chen Qiao, Ying Tang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Athabasca University Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9bc77b0dde7f4732be75a6a3c967a0e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Analysis of Course Characteristics, Learner Characteristics, and Certification Rates in MITx MOOCs
por: Nergiz Ercil Cagiltay, et al.
Publicado: (2020) -
A usability evaluation of a blended MOOC environment: An experimental case study
por: Ahmed Mohamed Fahmy Yousef, et al.
Publicado: (2015) -
In Search of Quality: Using Quality Matters to Analyze the Quality of Massive, Open, Online Courses (MOOCs)
por: Patrick Lowenthal, et al.
Publicado: (2015) -
Where is research on massive open online courses headed? A data analysis of the MOOC Research Initiative
por: Dragan Gasevic, et al.
Publicado: (2014) -
Pushing Toward a More Personalized MOOC: Exploring Instructor Selected Activities, Resources, and Technologies for MOOC Design and Implementation
por: Curtis J. Bonk, et al.
Publicado: (2018)