Understanding Student Engagement in Large-Scale Open Online Courses: A Machine Learning Facilitated Analysis of Student’s Reflections in 18 Highly Rated MOOCs
Although massive open online courses (MOOCs) have attracted much worldwide attention, scholars still understand little about the specific elements that students find engaging in these large open courses. This study offers a new original contribution by using a machine learning classifier to analyze...
Enregistré dans:
Auteurs principaux: | Khe Foon Hew, Chen Qiao, Ying Tang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Athabasca University Press
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9bc77b0dde7f4732be75a6a3c967a0e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Analysis of Course Characteristics, Learner Characteristics, and Certification Rates in MITx MOOCs
par: Nergiz Ercil Cagiltay, et autres
Publié: (2020) -
A usability evaluation of a blended MOOC environment: An experimental case study
par: Ahmed Mohamed Fahmy Yousef, et autres
Publié: (2015) -
In Search of Quality: Using Quality Matters to Analyze the Quality of Massive, Open, Online Courses (MOOCs)
par: Patrick Lowenthal, et autres
Publié: (2015) -
Where is research on massive open online courses headed? A data analysis of the MOOC Research Initiative
par: Dragan Gasevic, et autres
Publié: (2014) -
Pushing Toward a More Personalized MOOC: Exploring Instructor Selected Activities, Resources, and Technologies for MOOC Design and Implementation
par: Curtis J. Bonk, et autres
Publié: (2018)