Generalized and scalable trajectory inference in single-cell omics data with VIA

Scalable trajectory inference for multi-omic single cell datasets is challenging in terms of capturing non-tree complex topologies. Here the authors present a method, VIA, that scales to millions of cells across multiple omic modalities using lazy-teleporting random walks.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Shobana V. Stassen, Gwinky G. K. Yip, Kenneth K. Y. Wong, Joshua W. K. Ho, Kevin K. Tsia
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/9bd006f35d39495d922c8c86b7b6b9a2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!