Generalized and scalable trajectory inference in single-cell omics data with VIA
Scalable trajectory inference for multi-omic single cell datasets is challenging in terms of capturing non-tree complex topologies. Here the authors present a method, VIA, that scales to millions of cells across multiple omic modalities using lazy-teleporting random walks.
Enregistré dans:
Auteurs principaux: | Shobana V. Stassen, Gwinky G. K. Yip, Kenneth K. Y. Wong, Joshua W. K. Ho, Kevin K. Tsia |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9bd006f35d39495d922c8c86b7b6b9a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
par: Huidong Chen, et autres
Publié: (2019) -
Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line
par: Yapeng Su, et autres
Publié: (2020) -
DTFLOW: Inference and Visualization of Single-cell Pseudotime Trajectory Using Diffusion Propagation
par: Jiangyong Wei, et autres
Publié: (2021) -
Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data
par: Christoph Ogris, et autres
Publié: (2021) -
Scalable recombinase-based gene expression cascades
par: Tackhoon Kim, et autres
Publié: (2021)