Analysis of transient recovery voltage and secondary arc current in transposed extra-high voltage lines in a two-phase auto-reclosing

Extra-high voltage (EHV) lines of 500–750 kV, providing transmission of electricity over long distances and at the same time performing the functions of intersystem communication at the level of the national power system, play an important role not only in normal modes, but also in emergency modes,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Karomatullo Makhmudov, Tatyana Krasilnikova, Murodbek Safaraliev, Sergey Kokin, Anvari Ghulomzoda, Stepan Dmitriev
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/9bf139ca704d4bb682ce2ceee99f3639
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Extra-high voltage (EHV) lines of 500–750 kV, providing transmission of electricity over long distances and at the same time performing the functions of intersystem communication at the level of the national power system, play an important role not only in normal modes, but also in emergency modes, ensuring the dynamic stability of the power system as a whole. In these lines, the overwhelming proportion of power cuts are caused by single-phase short circuits (90%), a significant part of which, being unstable arc faults, are successfully eliminated in the single-phase auto-reclosing cycle. Also, about 5%–10% of failures can be constituted by two-phase short circuits, which can be eliminated in a two-phase auto-reclosing cycle (TPhAR). The purpose of this paper is to study two-phase auto-reclosing in transposed EHV lines equipped with four-radial shunt reactors (ShR). The paper analyzes the efficiency of using a two-phase auto-reclosing to eliminate two-phase short-circuits in the lines connecting the power systems of Kyrgyzstan and Tajikistan. An algorithm is proposed for calculating the transient recovering voltages (TRV) and secondary arc currents (SAC) in the real transposed line Datka–Khujand–Dushanbe. The obtained results of TRV and SAC, which are within the permissible limits for the Dushanbe–Khujand line section, make it possible to have a dead time of TPhAR of no more than 0.6 s, in order to maintain the dynamic stability of the power system. For lines with a length of about 500 km (Datka–Khujand), equipped with three reactors, a successful TPhAR is impossible due to the appearance of resonant TRV in the circuit. The paper proposes the use of banks of capacitors connected in series in the phases of the ShR for the implementation of a successful TPhAR with the duration of the required pause of about 0.6 s.