On primitive solutions of the Diophantine equation x2 + y2 = M

We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers.

Guardado en:
Detalles Bibliográficos
Autores principales: Busenhart Chris, Halbeisen Lorenz, Hungerbühler Norbert, Riesen Oliver
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9bf5dc1d11004d51977fd3000a10b3c9
record_format dspace
spelling oai:doaj.org-article:9bf5dc1d11004d51977fd3000a10b3c92021-12-05T14:10:53ZOn primitive solutions of the Diophantine equation x2 + y2 = M2391-545510.1515/math-2021-0087https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c92021-08-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0087https://doaj.org/toc/2391-5455We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers.Busenhart ChrisHalbeisen LorenzHungerbühler NorbertRiesen OliverDe Gruyterarticlepythagorean primesdiophantine equation11d4511d0911a41MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 863-868 (2021)
institution DOAJ
collection DOAJ
language EN
topic pythagorean primes
diophantine equation
11d45
11d09
11a41
Mathematics
QA1-939
spellingShingle pythagorean primes
diophantine equation
11d45
11d09
11a41
Mathematics
QA1-939
Busenhart Chris
Halbeisen Lorenz
Hungerbühler Norbert
Riesen Oliver
On primitive solutions of the Diophantine equation x2 + y2 = M
description We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers.
format article
author Busenhart Chris
Halbeisen Lorenz
Hungerbühler Norbert
Riesen Oliver
author_facet Busenhart Chris
Halbeisen Lorenz
Hungerbühler Norbert
Riesen Oliver
author_sort Busenhart Chris
title On primitive solutions of the Diophantine equation x2 + y2 = M
title_short On primitive solutions of the Diophantine equation x2 + y2 = M
title_full On primitive solutions of the Diophantine equation x2 + y2 = M
title_fullStr On primitive solutions of the Diophantine equation x2 + y2 = M
title_full_unstemmed On primitive solutions of the Diophantine equation x2 + y2 = M
title_sort on primitive solutions of the diophantine equation x2 + y2 = m
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c9
work_keys_str_mv AT busenhartchris onprimitivesolutionsofthediophantineequationx2y2m
AT halbeisenlorenz onprimitivesolutionsofthediophantineequationx2y2m
AT hungerbuhlernorbert onprimitivesolutionsofthediophantineequationx2y2m
AT riesenoliver onprimitivesolutionsofthediophantineequationx2y2m
_version_ 1718371619014967296