On primitive solutions of the Diophantine equation x2 + y2 = M
We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9bf5dc1d11004d51977fd3000a10b3c9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9bf5dc1d11004d51977fd3000a10b3c92021-12-05T14:10:53ZOn primitive solutions of the Diophantine equation x2 + y2 = M2391-545510.1515/math-2021-0087https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c92021-08-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0087https://doaj.org/toc/2391-5455We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers.Busenhart ChrisHalbeisen LorenzHungerbühler NorbertRiesen OliverDe Gruyterarticlepythagorean primesdiophantine equation11d4511d0911a41MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 863-868 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
pythagorean primes diophantine equation 11d45 11d09 11a41 Mathematics QA1-939 |
spellingShingle |
pythagorean primes diophantine equation 11d45 11d09 11a41 Mathematics QA1-939 Busenhart Chris Halbeisen Lorenz Hungerbühler Norbert Riesen Oliver On primitive solutions of the Diophantine equation x2 + y2 = M |
description |
We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers. |
format |
article |
author |
Busenhart Chris Halbeisen Lorenz Hungerbühler Norbert Riesen Oliver |
author_facet |
Busenhart Chris Halbeisen Lorenz Hungerbühler Norbert Riesen Oliver |
author_sort |
Busenhart Chris |
title |
On primitive solutions of the Diophantine equation x2 + y2 = M |
title_short |
On primitive solutions of the Diophantine equation x2 + y2 = M |
title_full |
On primitive solutions of the Diophantine equation x2 + y2 = M |
title_fullStr |
On primitive solutions of the Diophantine equation x2 + y2 = M |
title_full_unstemmed |
On primitive solutions of the Diophantine equation x2 + y2 = M |
title_sort |
on primitive solutions of the diophantine equation x2 + y2 = m |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c9 |
work_keys_str_mv |
AT busenhartchris onprimitivesolutionsofthediophantineequationx2y2m AT halbeisenlorenz onprimitivesolutionsofthediophantineequationx2y2m AT hungerbuhlernorbert onprimitivesolutionsofthediophantineequationx2y2m AT riesenoliver onprimitivesolutionsofthediophantineequationx2y2m |
_version_ |
1718371619014967296 |