On primitive solutions of the Diophantine equation x2 + y2 = M
We provide explicit formulae for primitive, integral solutions to the Diophantine equation x2+y2=M{x}^{2}+{y}^{2}=M, where MM is a product of powers of Pythagorean primes, i.e., of primes of the form 4n+14n+1. It turns out that this is a nice application of the theory of Gaussian integers.
Guardado en:
Autores principales: | Busenhart Chris, Halbeisen Lorenz, Hungerbühler Norbert, Riesen Oliver |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9bf5dc1d11004d51977fd3000a10b3c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diophantine approximation with one prime, two squares of primes and one kth power of a prime
por: Gambini Alessandro
Publicado: (2021) -
Counting certain quadratic partitions of zero modulo a prime number
por: Xiao Wang, et al.
Publicado: (2021) -
Generalized regression neuronal networks to predict the value of numismatic assets. Evidence for the walking liberty half dollar
por: Antonio Carlos Alcázar-Blanco, et al.
Publicado: (2021) -
A TECHNIQUE BASED ON THE EUCLIDEAN ALGORITHM AND ITS APPLICATIONS TO CRYPTOGRAPHY AND NONLINEAR DIOPHANTINE EQUATIONS
por: CORTÉS VEGA,LUIS A., et al.
Publicado: (2007) -
Diophantine Equations Relating Sums and Products of Positive Integers: Computation-Aided Study of Parametric Solutions, Bounds, and Distinct-Term Solutions
por: Petr Karlovsky
Publicado: (2021)