The reading of components of diabetic retinopathy: an evolutionary approach for filtering normal digital fundus imaging in screening and population based studies.
In any diabetic retinopathy screening program, about two-thirds of patients have no retinopathy. However, on average, it takes a human expert about one and a half times longer to decide an image is normal than to recognize an abnormal case with obvious features. In this work, we present an automated...
Guardado en:
Autores principales: | Hongying Lilian Tang, Jonathan Goh, Tunde Peto, Bingo Wing-Kuen Ling, Lutfiah Ismail Al Turk, Yin Hu, Su Wang, George Michael Saleh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9bfe811c86c8480e9b16cd2eb91c61d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Telemedicine for diabetic retinopathy screening using an ultra-widefield fundus camera
por: Hussain N, et al.
Publicado: (2017) -
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading
por: Jaakko Sahlsten, et al.
Publicado: (2019) -
An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images
por: Alexandros Papadopoulos, et al.
Publicado: (2021) -
Digital image processing software for diagnosing diabetic retinopathy from fundus photograph
por: Ratanapakorn T, et al.
Publicado: (2019) -
Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images
por: Kangrok Oh, et al.
Publicado: (2021)