AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles

As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that eac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Telma Esteves, Joao Ribeiro Pinto, Pedro M. Ferreira, Pedro Amaro Costa, Lourenco Abrunhosa Rodrigues, Ines Antunes, Gabriel Lopes, Pedro Gamito, Arnaldo J. Abrantes, Pedro M. Jorge, Andre Lourenco, Ana F. Sequeira, Jaime S. Cardoso, Ana Rebelo
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/9c060e043ea3414fb915dc5e1cded527
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9c060e043ea3414fb915dc5e1cded527
record_format dspace
spelling oai:doaj.org-article:9c060e043ea3414fb915dc5e1cded5272021-11-24T00:02:44ZAUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles2169-353610.1109/ACCESS.2021.3128016https://doaj.org/article/9c060e043ea3414fb915dc5e1cded5272021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9614134/https://doaj.org/toc/2169-3536As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring.Telma EstevesJoao Ribeiro PintoPedro M. FerreiraPedro Amaro CostaLourenco Abrunhosa RodriguesInes AntunesGabriel LopesPedro GamitoArnaldo J. AbrantesPedro M. JorgeAndre LourencoAna F. SequeiraJaime S. CardosoAna RebeloIEEEarticleBiometricsbiosignalscomputer visiondatadriverdrowsinessElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 153678-153700 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biometrics
biosignals
computer vision
data
driver
drowsiness
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Biometrics
biosignals
computer vision
data
driver
drowsiness
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Telma Esteves
Joao Ribeiro Pinto
Pedro M. Ferreira
Pedro Amaro Costa
Lourenco Abrunhosa Rodrigues
Ines Antunes
Gabriel Lopes
Pedro Gamito
Arnaldo J. Abrantes
Pedro M. Jorge
Andre Lourenco
Ana F. Sequeira
Jaime S. Cardoso
Ana Rebelo
AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles
description As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring.
format article
author Telma Esteves
Joao Ribeiro Pinto
Pedro M. Ferreira
Pedro Amaro Costa
Lourenco Abrunhosa Rodrigues
Ines Antunes
Gabriel Lopes
Pedro Gamito
Arnaldo J. Abrantes
Pedro M. Jorge
Andre Lourenco
Ana F. Sequeira
Jaime S. Cardoso
Ana Rebelo
author_facet Telma Esteves
Joao Ribeiro Pinto
Pedro M. Ferreira
Pedro Amaro Costa
Lourenco Abrunhosa Rodrigues
Ines Antunes
Gabriel Lopes
Pedro Gamito
Arnaldo J. Abrantes
Pedro M. Jorge
Andre Lourenco
Ana F. Sequeira
Jaime S. Cardoso
Ana Rebelo
author_sort Telma Esteves
title AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles
title_short AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles
title_full AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles
title_fullStr AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles
title_full_unstemmed AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles
title_sort automotive: a case study on automatic multimodal drowsiness detection for smart vehicles
publisher IEEE
publishDate 2021
url https://doaj.org/article/9c060e043ea3414fb915dc5e1cded527
work_keys_str_mv AT telmaesteves automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT joaoribeiropinto automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT pedromferreira automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT pedroamarocosta automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT lourencoabrunhosarodrigues automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT inesantunes automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT gabriellopes automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT pedrogamito automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT arnaldojabrantes automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT pedromjorge automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT andrelourenco automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT anafsequeira automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT jaimescardoso automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
AT anarebelo automotiveacasestudyonautomaticmultimodaldrowsinessdetectionforsmartvehicles
_version_ 1718416111031025664