Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
The inspection of wave motion and propagation of diffusion, convection, dispersion, and dissipation is a key research area in mathematics, physics, engineering, and real-time application fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two different methods...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c06303019d84249ae6e3a2f5898ee53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9c06303019d84249ae6e3a2f5898ee53 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9c06303019d84249ae6e3a2f5898ee532021-11-25T19:06:55ZTraveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method10.3390/sym131121262073-8994https://doaj.org/article/9c06303019d84249ae6e3a2f5898ee532021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2126https://doaj.org/toc/2073-8994The inspection of wave motion and propagation of diffusion, convection, dispersion, and dissipation is a key research area in mathematics, physics, engineering, and real-time application fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two different methods: the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><mi>φ</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> expansion method and Addendum to Kudryashov’s method to obtain the optical traveling wave solutions. By utilizing suitable transformations, the nonlinear <span style="font-variant: small-caps;">pde</span>s are transformed into <span style="font-variant: small-caps;">ode</span>s. The traveling wave solutions are expressed in terms of rational functions. For certain parameter values, the obtained optical solutions are described graphically with the aid of Maple 15 software.Hammad AlotaibiMDPI AGarticleoptical soliton solutionsimple algebraic direct methodnonlinear evolution equationsnonlinear Hirota–Maccari equationaddendum to Kudryashov’s methodMathematicsQA1-939ENSymmetry, Vol 13, Iss 2126, p 2126 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
optical soliton solution simple algebraic direct method nonlinear evolution equations nonlinear Hirota–Maccari equation addendum to Kudryashov’s method Mathematics QA1-939 |
spellingShingle |
optical soliton solution simple algebraic direct method nonlinear evolution equations nonlinear Hirota–Maccari equation addendum to Kudryashov’s method Mathematics QA1-939 Hammad Alotaibi Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method |
description |
The inspection of wave motion and propagation of diffusion, convection, dispersion, and dissipation is a key research area in mathematics, physics, engineering, and real-time application fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two different methods: the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><mi>φ</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> expansion method and Addendum to Kudryashov’s method to obtain the optical traveling wave solutions. By utilizing suitable transformations, the nonlinear <span style="font-variant: small-caps;">pde</span>s are transformed into <span style="font-variant: small-caps;">ode</span>s. The traveling wave solutions are expressed in terms of rational functions. For certain parameter values, the obtained optical solutions are described graphically with the aid of Maple 15 software. |
format |
article |
author |
Hammad Alotaibi |
author_facet |
Hammad Alotaibi |
author_sort |
Hammad Alotaibi |
title |
Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method |
title_short |
Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method |
title_full |
Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method |
title_fullStr |
Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method |
title_full_unstemmed |
Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method |
title_sort |
traveling wave solutions to the nonlinear evolution equation using expansion method and addendum to kudryashov’s method |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/9c06303019d84249ae6e3a2f5898ee53 |
work_keys_str_mv |
AT hammadalotaibi travelingwavesolutionstothenonlinearevolutionequationusingexpansionmethodandaddendumtokudryashovsmethod |
_version_ |
1718410293461123072 |