Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method

The inspection of wave motion and propagation of diffusion, convection, dispersion, and dissipation is a key research area in mathematics, physics, engineering, and real-time application fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two different methods...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hammad Alotaibi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/9c06303019d84249ae6e3a2f5898ee53
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9c06303019d84249ae6e3a2f5898ee53
record_format dspace
spelling oai:doaj.org-article:9c06303019d84249ae6e3a2f5898ee532021-11-25T19:06:55ZTraveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method10.3390/sym131121262073-8994https://doaj.org/article/9c06303019d84249ae6e3a2f5898ee532021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2126https://doaj.org/toc/2073-8994The inspection of wave motion and propagation of diffusion, convection, dispersion, and dissipation is a key research area in mathematics, physics, engineering, and real-time application fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two different methods: the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><mi>φ</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> expansion method and Addendum to Kudryashov’s method to obtain the optical traveling wave solutions. By utilizing suitable transformations, the nonlinear <span style="font-variant: small-caps;">pde</span>s are transformed into <span style="font-variant: small-caps;">ode</span>s. The traveling wave solutions are expressed in terms of rational functions. For certain parameter values, the obtained optical solutions are described graphically with the aid of Maple 15 software.Hammad AlotaibiMDPI AGarticleoptical soliton solutionsimple algebraic direct methodnonlinear evolution equationsnonlinear Hirota–Maccari equationaddendum to Kudryashov’s methodMathematicsQA1-939ENSymmetry, Vol 13, Iss 2126, p 2126 (2021)
institution DOAJ
collection DOAJ
language EN
topic optical soliton solution
simple algebraic direct method
nonlinear evolution equations
nonlinear Hirota–Maccari equation
addendum to Kudryashov’s method
Mathematics
QA1-939
spellingShingle optical soliton solution
simple algebraic direct method
nonlinear evolution equations
nonlinear Hirota–Maccari equation
addendum to Kudryashov’s method
Mathematics
QA1-939
Hammad Alotaibi
Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
description The inspection of wave motion and propagation of diffusion, convection, dispersion, and dissipation is a key research area in mathematics, physics, engineering, and real-time application fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two different methods: the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><mi>φ</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> expansion method and Addendum to Kudryashov’s method to obtain the optical traveling wave solutions. By utilizing suitable transformations, the nonlinear <span style="font-variant: small-caps;">pde</span>s are transformed into <span style="font-variant: small-caps;">ode</span>s. The traveling wave solutions are expressed in terms of rational functions. For certain parameter values, the obtained optical solutions are described graphically with the aid of Maple 15 software.
format article
author Hammad Alotaibi
author_facet Hammad Alotaibi
author_sort Hammad Alotaibi
title Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
title_short Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
title_full Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
title_fullStr Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
title_full_unstemmed Traveling Wave Solutions to the Nonlinear Evolution Equation Using Expansion Method and Addendum to Kudryashov’s Method
title_sort traveling wave solutions to the nonlinear evolution equation using expansion method and addendum to kudryashov’s method
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/9c06303019d84249ae6e3a2f5898ee53
work_keys_str_mv AT hammadalotaibi travelingwavesolutionstothenonlinearevolutionequationusingexpansionmethodandaddendumtokudryashovsmethod
_version_ 1718410293461123072