Dualization and discretization of linear-quadratic control problems with bang–bang solutions

We consider linear-quadratic (LQ) control problems, where the control variable appears linearly and is box-constrained. It is well-known that these problems exhibit bang–bang and singular solutions. We assume that the solution is of bang–bang type, which is computationally challenging to obtain. We...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Walter Alt, C. Yalçın Kaya, Christopher Schneider
Formato: article
Lenguaje:EN
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://doaj.org/article/9c065113ddd54f059d9bfe129bbf6686
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We consider linear-quadratic (LQ) control problems, where the control variable appears linearly and is box-constrained. It is well-known that these problems exhibit bang–bang and singular solutions. We assume that the solution is of bang–bang type, which is computationally challenging to obtain. We employ a quadratic regularization of the LQ control problem by embedding the L2-norm of the control variable into the cost functional. First, we find a dual problem guided by the methodology of Fenchel duality. Then we prove strong duality and the saddle point property, which together ensure that the primal solution can be recovered from the dual solution. We propose a discretization scheme for the dual problem, under which a diagram depicting the relations between the primal and dual problems and their discretization commutes. The commuting diagram ensures that, given convergence results for the discrete primal variables, discrete dual variables also converge to a solution of the dual problem with a similar error bound. We demonstrate via a simple but illustrative example that significant computational savings can be achieved by solving the dual, rather than the primal, problem.