Dualization and discretization of linear-quadratic control problems with bang–bang solutions
We consider linear-quadratic (LQ) control problems, where the control variable appears linearly and is box-constrained. It is well-known that these problems exhibit bang–bang and singular solutions. We assume that the solution is of bang–bang type, which is computationally challenging to obtain. We...
Enregistré dans:
| Auteurs principaux: | Walter Alt, C. Yalçın Kaya, Christopher Schneider |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Elsevier
2016
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/9c065113ddd54f059d9bfe129bbf6686 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Uncontrolled inexact information within bundle methods
par: Jérôme Malick, et autres
Publié: (2017) -
A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem
par: Jean-Pierre Dussault, et autres
Publié: (2019) -
A comparison of four approaches from stochastic programming for large-scale unit-commitment
par: Wim van Ackooij
Publié: (2017) -
On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems
par: Ron Shefi, et autres
Publié: (2016) -
On the construction of quadratic models for derivative-free trust-region algorithms
par: Adriano Verdério, et autres
Publié: (2017)