Dualization and discretization of linear-quadratic control problems with bang–bang solutions
We consider linear-quadratic (LQ) control problems, where the control variable appears linearly and is box-constrained. It is well-known that these problems exhibit bang–bang and singular solutions. We assume that the solution is of bang–bang type, which is computationally challenging to obtain. We...
Guardado en:
Autores principales: | Walter Alt, C. Yalçın Kaya, Christopher Schneider |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c065113ddd54f059d9bfe129bbf6686 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncontrolled inexact information within bundle methods
por: Jérôme Malick, et al.
Publicado: (2017) -
A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem
por: Jean-Pierre Dussault, et al.
Publicado: (2019) -
A comparison of four approaches from stochastic programming for large-scale unit-commitment
por: Wim van Ackooij
Publicado: (2017) -
On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems
por: Ron Shefi, et al.
Publicado: (2016) -
On the construction of quadratic models for derivative-free trust-region algorithms
por: Adriano Verdério, et al.
Publicado: (2017)