FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism
Saccharomyces cerevisiae is a model organism to study proteins involved in neurodegeneration. Here, the authors performed a yeast genome-wide synthetic genetic interaction array (SGA) to screen for toxicity modifiers of Aβ42 and identify riboflavin kinase and its metabolic product flavin mononucleot...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c14572cb31348da8b839cc360d90b92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Saccharomyces cerevisiae is a model organism to study proteins involved in neurodegeneration. Here, the authors performed a yeast genome-wide synthetic genetic interaction array (SGA) to screen for toxicity modifiers of Aβ42 and identify riboflavin kinase and its metabolic product flavin mononucleotide as modulators that alleviate cellular Aβ42 toxicity, which is supported by further experimental analyses. |
---|