Prediction of the Change Points in Stock Markets Using DAE-LSTM
Since the creation of stock markets, there have been attempts to predict their movements, and new prediction methodologies have been devised. According to a recent study, when the Russell 2000 industry index starts to rise, stocks belonging to the corresponding industry in other countries also rise...
Guardado en:
Autores principales: | Sanghyuk Yoo, Sangyong Jeon, Seunghwan Jeong, Heesoo Lee, Hosun Ryou, Taehyun Park, Yeonji Choi, Kyongjoo Oh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c173e41ffc844b3a9b8125ee05783e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis
por: Weichao Dong, et al.
Publicado: (2021) -
ADAGE-Based Integration of Publicly Available <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content> Gene Expression Data with Denoising Autoencoders Illuminates Microbe-Host Interactions
por: Jie Tan, et al.
Publicado: (2016) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
Contrastive Learning for 3D Point Clouds Classification and Shape Completion
por: Danish Nazir, et al.
Publicado: (2021) -
Research on Precipitation Forecast Based on LSTM–CP Combined Model
por: Yan Guo, et al.
Publicado: (2021)