Massively parallel digital transcriptional profiling of single cells

Single-cell gene expression analysis is challenging. This work describes a new droplet-based single cell RNA-seq platform capable of processing tens of thousands of cells across 8 independent samples in minutes, and demonstrates cellular subtypes and host–donor chimerism in transplant patients.

Saved in:
Bibliographic Details
Main Authors: Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan Wilson, Solongo B. Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu, Mark T. Gregory, Joe Shuga, Luz Montesclaros, Jason G. Underwood, Donald A. Masquelier, Stefanie Y. Nishimura, Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv Bharadwaj, Alexander Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher McFarland, Keith R. Loeb, William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich, Tarjei S. Mikkelsen, Benjamin J. Hindson, Jason H. Bielas
Format: article
Language:EN
Published: Nature Portfolio 2017
Subjects:
Q
Online Access:https://doaj.org/article/9c33171e807745c7908a1e1e9a3712e3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-cell gene expression analysis is challenging. This work describes a new droplet-based single cell RNA-seq platform capable of processing tens of thousands of cells across 8 independent samples in minutes, and demonstrates cellular subtypes and host–donor chimerism in transplant patients.