Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores

The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as an effective tool for modelling defects in crystall...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Alexandra M. Goryaeva, Clovis Lapointe, Chendi Dai, Julien Dérès, Jean-Bernard Maillet, Mihai-Cosmin Marinica
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/9c4d246c54c44202a50b99c9a8ea072c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as an effective tool for modelling defects in crystalline solids.