Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores

The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as an effective tool for modelling defects in crystall...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexandra M. Goryaeva, Clovis Lapointe, Chendi Dai, Julien Dérès, Jean-Bernard Maillet, Mihai-Cosmin Marinica
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/9c4d246c54c44202a50b99c9a8ea072c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as an effective tool for modelling defects in crystalline solids.