Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores
The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as an effective tool for modelling defects in crystall...
Enregistré dans:
Auteurs principaux: | Alexandra M. Goryaeva, Clovis Lapointe, Chendi Dai, Julien Dérès, Jean-Bernard Maillet, Mihai-Cosmin Marinica |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9c4d246c54c44202a50b99c9a8ea072c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Anisotropic ferroelectric distortion effects on the RKKY interaction in topological crystalline insulators
par: Hosein Cheraghchi, et autres
Publié: (2021) -
Rate-Distortion Optimized Encoding for Deep Image Compression
par: Michael Schafer, et autres
Publié: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
par: Svetoslav Nikolov, et autres
Publié: (2021) - Journal of non-crystalline solids
-
Rate-Distortion Optimization Based on Two-Pass Encoding for HEVC
par: Hongwei Guo, et autres
Publié: (2021)