Learning to steer nonlinear interior-point methods
Interior-point or barrier methods handle nonlinear programs by sequentially solving barrier subprograms with a decreasing sequence of barrier parameters. The specific barrier update rule strongly influences the theoretical convergence properties as well as the practical efficiency. While many global...
Guardado en:
Autor principal: | Renke Kuhlmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c6ab9943b5b419ab8777f61af05c91c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness
por: Martin Schmidt
Publicado: (2015) -
A globally convergent algorithm for MPCC
por: Abdeslam Kadrani, et al.
Publicado: (2015) -
A comparison of four approaches from stochastic programming for large-scale unit-commitment
por: Wim van Ackooij
Publicado: (2017) -
On the construction of quadratic models for derivative-free trust-region algorithms
por: Adriano Verdério, et al.
Publicado: (2017) -
Uncontrolled inexact information within bundle methods
por: Jérôme Malick, et al.
Publicado: (2017)