Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line
Here, we present the first in silico and in vitro evidence of Aβ-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aβ peptide domain were synthesized and tested in vitro in a neuron cell-line model...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c71e6fdd3a54fb591c54c5cd9b4b92a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9c71e6fdd3a54fb591c54c5cd9b4b92a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9c71e6fdd3a54fb591c54c5cd9b4b92a2021-11-25T18:34:47ZMicrobiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line10.3390/nu131138682072-6643https://doaj.org/article/9c71e6fdd3a54fb591c54c5cd9b4b92a2021-10-01T00:00:00Zhttps://www.mdpi.com/2072-6643/13/11/3868https://doaj.org/toc/2072-6643Here, we present the first in silico and in vitro evidence of Aβ-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aβ peptide domain were synthesized and tested in vitro in a neuron cell-line model. Gene expression profile analysis showed that one of them induced whole gene pathways related to AD, opening the way to translational approaches to assess whether gut microbiota-derived peptides might be implicated in the neurodegenerative processes related to AD. This exploratory work opens the path to new approaches for understanding the relationship between the gut microbiome and the triggering of potential molecular events leading to AD. As microbiota can be modified using diet, tools for precise nutritional intervention or targeted microbiota modification in animal models might help us to understand the individual roles of gut bacteria releasing Aβ-like peptides and therefore their contribution to this progressive disease.Aitor Blanco-MíguezHector TamésPatricia Ruas-MadiedoBorja SánchezMDPI AGarticleAlzheimer’s diseasehuman gut microbiotaβ-amyloid-like peptidesNutrition. Foods and food supplyTX341-641ENNutrients, Vol 13, Iss 3868, p 3868 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Alzheimer’s disease human gut microbiota β-amyloid-like peptides Nutrition. Foods and food supply TX341-641 |
spellingShingle |
Alzheimer’s disease human gut microbiota β-amyloid-like peptides Nutrition. Foods and food supply TX341-641 Aitor Blanco-Míguez Hector Tamés Patricia Ruas-Madiedo Borja Sánchez Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line |
description |
Here, we present the first in silico and in vitro evidence of Aβ-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aβ peptide domain were synthesized and tested in vitro in a neuron cell-line model. Gene expression profile analysis showed that one of them induced whole gene pathways related to AD, opening the way to translational approaches to assess whether gut microbiota-derived peptides might be implicated in the neurodegenerative processes related to AD. This exploratory work opens the path to new approaches for understanding the relationship between the gut microbiome and the triggering of potential molecular events leading to AD. As microbiota can be modified using diet, tools for precise nutritional intervention or targeted microbiota modification in animal models might help us to understand the individual roles of gut bacteria releasing Aβ-like peptides and therefore their contribution to this progressive disease. |
format |
article |
author |
Aitor Blanco-Míguez Hector Tamés Patricia Ruas-Madiedo Borja Sánchez |
author_facet |
Aitor Blanco-Míguez Hector Tamés Patricia Ruas-Madiedo Borja Sánchez |
author_sort |
Aitor Blanco-Míguez |
title |
Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line |
title_short |
Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line |
title_full |
Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line |
title_fullStr |
Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line |
title_full_unstemmed |
Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line |
title_sort |
microbiota-derived β-amyloid-like peptides trigger alzheimer’s disease-related pathways in the sh-sy5y neural cell line |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/9c71e6fdd3a54fb591c54c5cd9b4b92a |
work_keys_str_mv |
AT aitorblancomiguez microbiotaderivedbamyloidlikepeptidestriggeralzheimersdiseaserelatedpathwaysintheshsy5yneuralcellline AT hectortames microbiotaderivedbamyloidlikepeptidestriggeralzheimersdiseaserelatedpathwaysintheshsy5yneuralcellline AT patriciaruasmadiedo microbiotaderivedbamyloidlikepeptidestriggeralzheimersdiseaserelatedpathwaysintheshsy5yneuralcellline AT borjasanchez microbiotaderivedbamyloidlikepeptidestriggeralzheimersdiseaserelatedpathwaysintheshsy5yneuralcellline |
_version_ |
1718410968641306624 |