Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading
Using the finite element method we quantitatively analyse temperature field evolution in a viscoelastic solid undergoing a loading–unloading process. In particular we investigate the temperature field inside a Kelvin–Voigt type viscoelastic body with a thin cutout. We find that the viscosity signifi...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c7d72b87006457d90eb9f1728cecfc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9c7d72b87006457d90eb9f1728cecfc3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9c7d72b87006457d90eb9f1728cecfc32021-12-01T05:06:14ZTemperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading2666-496810.1016/j.apples.2021.100054https://doaj.org/article/9c7d72b87006457d90eb9f1728cecfc32021-06-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666496821000200https://doaj.org/toc/2666-4968Using the finite element method we quantitatively analyse temperature field evolution in a viscoelastic solid undergoing a loading–unloading process. In particular we investigate the temperature field inside a Kelvin–Voigt type viscoelastic body with a thin cutout. We find that the viscosity significantly contributes to the temperature field changes, and that the temperature field changes initiated by the loading–unloading process are strongly concentrated at the tip of the thin cutout. The predicted temperature field qualitatively corresponds to the temperature field observed in experiments focused on simultaneous heat and strain measurements at the crack tip inside materials such as the filled rubber.Vít PrůšaKarel TůmaElsevierarticle74D1074H15Engineering (General). Civil engineering (General)TA1-2040ENApplications in Engineering Science, Vol 6, Iss , Pp 100054- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
74D10 74H15 Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
74D10 74H15 Engineering (General). Civil engineering (General) TA1-2040 Vít Průša Karel Tůma Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
description |
Using the finite element method we quantitatively analyse temperature field evolution in a viscoelastic solid undergoing a loading–unloading process. In particular we investigate the temperature field inside a Kelvin–Voigt type viscoelastic body with a thin cutout. We find that the viscosity significantly contributes to the temperature field changes, and that the temperature field changes initiated by the loading–unloading process are strongly concentrated at the tip of the thin cutout. The predicted temperature field qualitatively corresponds to the temperature field observed in experiments focused on simultaneous heat and strain measurements at the crack tip inside materials such as the filled rubber. |
format |
article |
author |
Vít Průša Karel Tůma |
author_facet |
Vít Průša Karel Tůma |
author_sort |
Vít Průša |
title |
Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
title_short |
Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
title_full |
Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
title_fullStr |
Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
title_full_unstemmed |
Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
title_sort |
temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/9c7d72b87006457d90eb9f1728cecfc3 |
work_keys_str_mv |
AT vitprusa temperaturefieldandheatgenerationatthetipofacutoutinaviscoelasticsolidbodyundergoingloading AT kareltuma temperaturefieldandheatgenerationatthetipofacutoutinaviscoelasticsolidbodyundergoingloading |
_version_ |
1718405559338663936 |