Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping
Crop identification is key to global food security. Due to the large scale of crop estimation, the science of remote sensing was able to do well in this field. The purpose of this study is to study the shortcomings and strengths of combined radar data and optical images to identify the type of crops...
Guardado en:
Autores principales: | Shilan Felegari, Alireza Sharifi, Kamran Moravej, Muhammad Amin, Ahmad Golchin, Anselme Muzirafuti, Aqil Tariq, Na Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c889c0d2df44aba9df56ec1e45e9bc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Partial Shape Recognition for Sea Ice Motion Retrieval in the Marginal Ice Zone from Sentinel-1 and Sentinel-2
por: Mingfeng Wang, et al.
Publicado: (2021) -
Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
por: Subhadip Dey, et al.
Publicado: (2021) -
Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series
por: Félix Quinton, et al.
Publicado: (2021) -
Assessment of Chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data
por: Moutzouris-Sidiris Ioannis, et al.
Publicado: (2021) -
Optimal Grid-Based Filtering for Crop Phenology Estimation with Sentinel-1 SAR Data
por: Lucio Mascolo, et al.
Publicado: (2021)