Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping
Crop identification is key to global food security. Due to the large scale of crop estimation, the science of remote sensing was able to do well in this field. The purpose of this study is to study the shortcomings and strengths of combined radar data and optical images to identify the type of crops...
Enregistré dans:
Auteurs principaux: | Shilan Felegari, Alireza Sharifi, Kamran Moravej, Muhammad Amin, Ahmad Golchin, Anselme Muzirafuti, Aqil Tariq, Na Zhao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9c889c0d2df44aba9df56ec1e45e9bc3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Partial Shape Recognition for Sea Ice Motion Retrieval in the Marginal Ice Zone from Sentinel-1 and Sentinel-2
par: Mingfeng Wang, et autres
Publié: (2021) -
Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
par: Subhadip Dey, et autres
Publié: (2021) -
Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series
par: Félix Quinton, et autres
Publié: (2021) -
Assessment of Chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data
par: Moutzouris-Sidiris Ioannis, et autres
Publié: (2021) -
Optimal Grid-Based Filtering for Crop Phenology Estimation with Sentinel-1 SAR Data
par: Lucio Mascolo, et autres
Publié: (2021)